7 research outputs found

    Study of Time Evolution of Thermal and Non-Thermal Emission from an M-Class Solar Flare

    Get PDF
    We conduct a wide-band X-ray spectral analysis in the energy range of 1.5-100 keV to study the time evolution of the M7.6 class flare of 2016 July 23, with the Miniature X-ray Solar Spectrometer (MinXSS) CubeSat and the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) spacecraft. With the combination of MinXSS for soft X-rays and RHESSI for hard X-rays, a non-thermal component and three-temperature multi-thermal component -- "cool" (TT \approx 3 MK), "hot" (TT \approx 15 MK), and "super-hot" (TT \approx 30 MK) -- were measured simultaneously. In addition, we successfully obtained the spectral evolution of the multi-thermal and non-thermal components with a 10 s cadence, which corresponds to the Alfv\'en time scale in the solar corona. We find that the emission measures of the cool and hot thermal components are drastically increasing more than hundreds of times and the super-hot thermal component is gradually appearing after the peak of the non-thermal emission. We also study the microwave spectra obtained by the Nobeyama Radio Polarimeters (NoRP), and we find that there is continuous gyro-synchrotron emission from mildly relativistic non-thermal electrons. In addition, we conducted a differential emission measure (DEM) analysis by using Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) and determine that the DEM of cool plasma increases within the flaring loop. We find that the cool and hot plasma components are associated with chromospheric evaporation. The super-hot plasma component could be explained by the thermalization of the non-thermal electrons trapped in the flaring loop.Comment: 20 pages, 12 figures, 1 tables. Accepted for publication in Ap

    2-mm-Thick Large-Area CdTe Double-sided Strip Detectors for High-Resolution Spectroscopic Imaging of X-ray and Gamma-ray with Depth-Of-Interaction Sensing

    Full text link
    We developed a 2-mm-thick CdTe double-sided strip detector (CdTe-DSD) with a 250 um strip pitch, which has high spatial resolution with a uniform large imaging area of 10 cm2^2 and high energy resolution with high detection efficiency in tens to hundreds keV. The detector can be employed in a wide variety of fields for quantitative observations of hard X-ray and soft gamma-ray with spectroscopic imaging, for example, space observation, nuclear medicine, and non-destructive elemental analysis. This detector is thicker than the 0.75-mm-thick one previously developed by a factor of \sim2.7, thus providing better detection efficiency for hard X-rays and soft gamma rays. The increased thickness could potentially enhance bias-induced polarization if we do not apply sufficient bias and if we do not operate at a low temperature, but the polarization is not evident in our detector when a high voltage of 500 V is applied to the CdTe diode and the temperature is maintained at -20 ^\circC during one-day experiments. The ''Depth Of Interaction'' (DOI) dependence due to the CdTe diode's poor carrier-transport property is also more significant, resulting in much DOI information while complicated detector responses such as charge sharings or low-energy tails that exacerbate the loss in the energy resolution. In this paper, we developed 2-mm-thick CdTe-DSDs, studied their response, and evaluated their energy resolution, spatial resolution, and uniformity. We also constructed a theoretical model to understand the detector response theoretically, resulting in reconstructing the DOI with an accuracy of 100 um while estimating the carrier-transport property. We realized the detector that has high energy resolution and high 3D spatial resolution with a uniform large imaging area.Comment: 13 pages, 11 figures, 1 table, Accepted for publication in NIM
    corecore