245 research outputs found

    Quantification of the overall contribution of gene-environment interaction for obesity-related traits

    Get PDF
    The growing sample size of genome-wide association studies has facilitated the discovery of gene-environment interactions (GxE). Here we propose a maximum likelihood method to estimate the contribution of GxE to continuous traits taking into account all interacting environmental variables, without the need to measure any. Extensive simulations demonstrate that our method provides unbiased interaction estimates and excellent coverage. We also offer strategies to distinguish specific GxE from general scale effects. Applying our method to 32 traits in the UK Biobank reveals that while the genetic risk score (GRS) of 376 variants explains 5.2% of body mass index (BMI) variance, GRSxE explains an additional 1.9%. Nevertheless, this interaction holds for any variable with identical correlation to BMI as the GRS, hence may not be GRS-specific. Still, we observe that the global contribution of specific GRSxE to complex traits is substantial for nine obesity-related measures (including leg impedance and trunk fat-free mass).This article is freely available via Open Access. Click on the Publisher URL to access it via the publisher's site.published version, accepted version, submitted versio

    Protocols, methods, and tools for genome-wide association studies (GWAS) of dental traits

    Get PDF
    Oral health and disease are known to be influenced by complex interactions between environmental (e.g., social and behavioral) factors and innate susceptibility. Although the exact contribution of genomics and other layers of “omics” to oral health is an area of active research, it is well established that the susceptibility to dental caries, periodontal disease, and other oral and craniofacial traits is substantially influenced by the human genome. A comprehensive understanding of these genomic factors is necessary for the realization of precision medicine in the oral health domain. To aid in this direction, the advent and increasing affordability of high-throughput genotyping has enabled the simultaneous interrogation of millions of genetic polymorphisms for association with oral and craniofacial traits. Specifically, genome-wide association studies (GWAS) of dental caries and periodontal disease have provided initial insights into novel loci and biological processes plausibly implicated in these two common, complex, biofilm-mediated diseases. This paper presents a summary of protocols, methods, tools, and pipelines for the conduct of GWAS of dental caries, periodontal disease, and related traits. The protocol begins with the consideration of different traits for both diseases and outlines procedures for genotyping, quality control, adjustment for population stratification, heritability and association analyses, annotation, reporting, and interpretation. Methods and tools available for GWAS are being constantly updated and improved; with this in mind, the presented approaches have been successfully applied in numerous GWAS and meta-analyses among tens of thousands of individuals, including dental traits such as dental caries and periodontal disease. As such, they can serve as a guide or template for future genomic investigations of these and other traits

    The supragingival biofilm in early childhood caries: Clinical and laboratory protocols and bioinformatics pipelines supporting metagenomics, metatranscriptomics, and metabolomics studies of the oral microbiome

    Get PDF
    Early childhood caries (ECC) is a biofilm-mediated disease. Social, environmental, and behavioral determinants as well as innate susceptibility are major influences on its incidence; however, from a pathogenetic standpoint, the disease is defined and driven by oral dysbiosis. In other words, the disease occurs when the natural equilibrium between the host and its oral microbiome shifts toward states that promote demineralization at the biofilm-tooth surface interface. Thus, a comprehensive understanding of dental caries as a disease requires the characterization of both the composition and the function or metabolic activity of the supragingival biofilm according to well-defined clinical statuses. However, taxonomic and functional information of the supragingival biofilm is rarely available in clinical cohorts, and its collection presents unique challenges among very young children. This paper presents a protocol and pipelines available for the conduct of supragingival biofilm microbiome studies among children in the primary dentition, that has been designed in the context of a large-scale population-based genetic epidemiologic study of ECC. The protocol is being developed for the collection of two supragingival biofilm samples from the maxillary primary dentition, enabling downstream taxonomic (e.g., metagenomics) and functional (e.g., transcriptomics and metabolomics) analyses. The protocol is being implemented in the assembly of a pediatric precision medicine cohort comprising over 6000 participants to date, contributing social, environmental, behavioral, clinical, and biological data informing ECC and other oral health outcomes

    Integrative analysis of omics summary data reveals putative mechanisms underlying complex traits

    Get PDF
    The identification of genes and regulatory elements underlying the associations discovered by GWAS is essential to understanding the aetiology of complex traits (including diseases). Here, we demonstrate an analytical paradigm of prioritizing genes and regulatory elements at GWAS loci for follow-up functional studies. We perform an integrative analysis that uses summary-level SNP data from multi-omics studies to detect DNA methylation (DNAm) sites associated with gene expression and phenotype through shared genetic effects (i.e., pleiotropy). We identify pleiotropic associations between 7858 DNAm sites and 2733 genes. These DNAm sites are enriched in enhancers and promoters, and >40% of them are mapped to distal genes. Further pleiotropic association analyses, which link both the methylome and transcriptome to 12 complex traits, identify 149 DNAm sites and 66 genes, indicating a plausible mechanism whereby the effect of a genetic variant on phenotype is mediated by genetic regulation of transcription through DNAm

    Using genetics to test the causal relationship of total adiposity and periodontitis: Mendelian randomization analyses in the Gene-Lifestyle Interactions and Dental Endpoints (GLIDE) Consortium

    Get PDF
    Background: The observational relationship between obesity and periodontitis is widely known, yet causal evidence is lacking. Our objective was to investigate causal associations between periodontitis and body mass index (BMI).Methods: We performed Mendelian randomization analyses with BMI-associated loci combined in a genetic risk score (GRS) as the instrument for BMI. All analyses were conducted within the Gene-Lifestyle Interactions and Dental Endpoints (GLIDE) Consortium in 13 studies from Europe and the USA, including 49 066 participants with clinically assessed (seven studies, 42.1% of participants) and self-reported (six studies, 57.9% of participants) periodontitis and genotype data (17 672/31 394 with/without periodontitis); 68 761 participants with BMI and genotype data; and 57 871 participants (18 881/38 990 with/without periodontitis) with data on BMI and periodontitis.Results: In the observational meta-analysis of all participants, the pooled crude observational odds ratio (OR) for periodontitis was 1.13 [95% confidence interval (CI): 1.03, 1.24] per standard deviation increase of BMI. Controlling for potential confounders attenuated this estimate (OR = 1.08; 95% CI:1.03, 1.12). For clinically assessed periodontitis, corresponding ORs were 1.25 (95% CI: 1.10, 1.42) and 1.13 (95% CI: 1.10, 1.17), respectively. In the genetic association meta-analysis, the OR for periodontitis was 1.01 (95% CI: 0.99, 1.03) per GRS unit (per one effect allele) in all participants and 1.00 (95% CI: 0.97, 1.03) in participants with clinically assessed periodontitis. The instrumental variable meta-analysis of all participants yielded an OR of 1.05 (95% CI: 0.80, 1.38) per BMI standard deviation, and 0.90 (95% CI: 0.56, 1.46) in participants with clinical data.Conclusions: Our study does not support total adiposity as a causal risk factor for periodontitis, as the point estimate is very close to the null in the causal inference analysis, with wide confidence intervals
    • 

    corecore