28 research outputs found

    New clinical developments in histone deacetylase inhibitors for epigenetic therapy of cancer

    Get PDF
    DNA methylation and histone acetylation are two well known epigenetic chromatin modifications. Epigenetic agents leading to DNA hypomethylation and histone hyperacetylation have been approved for treatment of hematological disorders. The first histone deacetylase inhibitor, vorinostat, has been licensed for cutaneous T cell lymphoma treatment. More than 11 new epigenetic agents are in various stages of clinical development for therapy of multiple cancer types. In this review we summarize novel histone deacetylase inhibitors and new regimens from clinical trials for epigenetic therapy of cancer

    Hypoacetylation, Hypomethylation, and Dephosphorylation of H2B Histones and Excessive Histone Deacetylase Activity in DU-145 Prostate Cancer Cells

    Get PDF
    BACKGROUND: Hypoacetylation on histone H3 of human prostate cancer cells has been described. Little is known about the modifications of other histones from prostate cancer cells. METHODS: Histones were isolated from the prostate cancer cell line DU-145 and the non-malignant prostatic cell line RC170N/h. Post-translational modifications of histone H2B were determined by liquid chromatography-mass spectrometry (LC-MS)/MS. RESULTS: The histone H2B of the prostate cancer cell line DU-145 was found to have hypoacetylation, hypomethylation, and dephosphorylation as compared to the non-malignant prostatic cell line RC170N/h. H2B regained acetylation on multiple lysine residues, phosphorylation on Thr19, and methylation on Lys23 and Lys43 in the DU-145 cells after sodium butyrate treatment. CONCLUSIONS: The histone H2B of DU-145 prostate cancer cells are hypoacetylated, hypomethylated, and dephosphorylated. Histone deacetylase inhibitor reversed this phenotype. Epigenetic agent may therefore be useful for prostate cancer therapy and worth further investigation

    Novel histone deacetylase inhibitors in clinical trials as anti-cancer agents

    Get PDF
    Histone deacetylases (HDACs) can regulate expression of tumor suppressor genes and activities of transcriptional factors involved in both cancer initiation and progression through alteration of either DNA or the structural components of chromatin. Recently, the role of gene repression through modulation such as acetylation in cancer patients has been clinically validated with several inhibitors of HDACs. One of the HDAC inhibitors, vorinostat, has been approved by FDA for treating cutaneous T-cell lymphoma (CTCL) for patients with progressive, persistent, or recurrent disease on or following two systemic therapies. Other inhibitors, for example, FK228, PXD101, PCI-24781, ITF2357, MGCD0103, MS-275, valproic acid and LBH589 have also demonstrated therapeutic potential as monotherapy or combination with other anti-tumor drugs in CTCL and other malignancies. At least 80 clinical trials are underway, testing more than eleven different HDAC inhibitory agents including both hematological and solid malignancies. This review focuses on recent development in clinical trials testing HDAC inhibitors as anti-tumor agents

    Establishment of Prostate Cancer Spheres from a Prostate Cancer Cell Line After Phenethyl Isothiocyanate Treatment and Discovery of androgen-Dependent Reversible Differentiation Between Sphere and Neuroendocrine Cells

    Get PDF
    Prostate cancer can transform from androgen-responsive to an androgen-independent phenotype. The mechanism responsible for the transformation remains unclear. We studied the effects of an epigenetic modulator, phenethyl isothiocyanate (PEITC), on the androgen-responsive LNCaP cells. After treatment with PEITC, floating spheres were formed with characteristics of prostate cancer stem cells (PCSC). These spheres were capable of self-renewal in media with and without androgen. They have been maintained in both types of media as long term cultures. Upon androgen deprivation, the adherent spheres differentiated to neuroendocrine cells (NEC) with decreased proliferation, expression of androgen receptor, and PSA. NEC reverse differentiated to spheres when androgen was replenished. The sphere cells expressed surface marker CD44 and had enhanced histone H3K4 acetylation, DNMT1 down-regulation and GSTP1 activation. We hypothesize that PEITC-mediated alteration in epigenomics of LNCaP cells may give rise to sphere cells, whereas reversible androgenomic alterations govern the shuttling between sphere PCSC and progeny NEC. Our findings identify unrecognized properties of prostate cancer sphere cells with multi-potential plasticity. This system will facilitate development of novel therapeutic agents and allow further exploration into epigenomics and androgenomics governing the transformation to hormone refractory prostate cancer

    P-loop mutations and novel therapeutic approaches for imatinib failures in chronic myeloid leukemia

    Get PDF
    Imatinib was the first BCR-ABL-targeted agent approved for the treatment of patients with chronic myeloid leukemia (CML) and confers significant benefit for most patients; however, a substantial number of patients are either initially refractory or develop resistance. Point mutations within the ABL kinase domain of the BCR-ABL fusion protein are a major underlying cause of resistance. Of the known imatinib-resistant mutations, the most frequently occurring involve the ATP-binding loop (P-loop). In vitro evidence has suggested that these mutations are more oncogenic with respect to other mutations and wild type BCR-ABL. Dasatinib and nilotinib have been approved for second-line treatment of patients with CML who demonstrate resistance (or intolerance) to imatinib. Both agents have marked activity in patients resistant to imatinib; however, they have differential activity against certain mutations, including those of the P-loop. Data from clinical trials suggest that dasatinib may be more effective vs. nilotinib for treating patients harboring P-loop mutations. Other mutations that are differentially sensitive to the second-line tyrosine kinase inhibitors (TKIs) include F317L and F359I/V, which are more sensitive to nilotinib and dasatinib, respectively. P-loop status in patients with CML and the potency of TKIs against P-loop mutations are key determinants for prognosis and response to treatment. This communication reviews the clinical importance of P-loop mutations and the efficacy of the currently available TKIs against them

    Third-generation inhibitors targeting EGFR T790M mutation in advanced non-small cell lung cancer

    No full text
    Abstract The tyrosine kinase inhibitors (TKI) against epidermal growth factor receptor (EGFR) are widely used in patients with non-small cell lung cancer (NSCLC). However, EGFR T790M mutation leads to resistance to most clinically available EGFR TKIs. Third-generation EGFR TKIs against the T790M mutation have been in active clinical development. These agents include osimertinib, rociletinib, HM61713, ASP8273, EGF816, and PF-06747775. Osimertinib and rociletinib have shown clinical efficacy in phase I/II trials in patients who had acquired resistance to first- or second-generation TKIs. Osimertinib (AZD9291, TAGRISSO) was recently approved by FDA for metastatic EGFR T790M mutation-positive NSCLC. HM61713, ASP8237, EGF816, and PF-06747775 are still in early clinical development. This article reviews the emerging data regarding third-generation agents against EGFR T790M mutation in the treatment of patients with advanced NSCLC
    corecore