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Abstract

Anaplastic lymphoma kinase 1 (ALK-1) is a member of the insulin receptor tyrosine kinase family. ALK-1 was initially found
in anaplastic large cell lymphoma (ALCL). ALK mutations have also been implicated in the pathogenesis of non-small cell
lung cancer (NSCLC) and other solid tumors. Multiple small molecule inhibitors with activity against ALK and
related oncoproteins are under clinical development. Two of them, crizotinib and ceritinib, have been approved
by FDA for treatment of locally advanced and metastatic NSCLC. More agents (alectinib, ASP3026, X396) with improved
safety, selectivity, and potency are in the pipeline. Dual inhibitors targeting ALK and EGFRm (AP26113), TRK (TSR011),
FAK (CEP-37440), or ROS1 (RXDX-101, PF-06463922) are under active clinical development.
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Introduction
Anaplastic lymphoma kinase 1 (ALK-1) is a member of
the insulin receptor tyrosine kinase family (RTK) [1].
Members of this family include α and β type PDGF re-
ceptors, EGF receptor, HER2/neu, insulin and IGF-1 re-
ceptors which regulate cellular growth and may trigger
neoplastic transformation when mutated, translocated,
or expressed aberrantly [1-3]. ALK-1 first was found to
be associated with the (2; 5)(p23; q35) chromosome
translocation in Ki-1 lymphoma or anaplastic large cell
lymphoma (ALCL) [4]. The same translocation has also
been associated with Hodgkin lymphoma [1]. Multiple
mutations involving the ALK gene have since been iden-
tified in ALCL. ALK mutations have also been impli-
cated in the pathogenesis of rhabdomyosarcoma [5],
inflammatory myofibroblastic pseudo tumor [6], neuro-
blastoma [7] and non-small cell lung Cancer [8]. In this
article, we discussed common ALK mutations and pro-
vided a review of ALK-1 Inhibitors that are currently in
clinical use or under clinical development.
ALK-1 mutations and oncogenesis
Multiple mutations involving the ALK gene located on
2p23 have been described. The first and prototype of
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these mutations has been the NPM-ALK mutation
caused by translocation (2; 5)(p23; q35) [4,9,10]. This
mutation fuses the nucleophosmin (NPM) gene with the
ALK gene and was first described in Ki-1 Lymphoma.
Ki-1 Lymphoma is a distinct subset of large cell lymph-
omas that are characterized by CD-30 (Ki-1 antigen)
positivity. CD30 is a transmembrane protein which be-
longs to the nuclear growth factor superfamily and is
thought to be involved in ligand binding [4]. NPM en-
codes for the nucleophosmin protein that is localized to
the nucleolus and involved in ribosomal assembly. It is
postulated that it provides positive feedback to cell
growth [11,12]. The NPM-ALK fusion gene encodes a
chimeric receptor tyrosine kinase (RTK) that is de-
regulated and constitutionally activated. This leads to ac-
tivation of phospholipase C-γ (PLC-γ) [8]. Activation of
PLC-γ leads to growth factor independent proliferation
of lymphocytes. Another mechanism that has been eluci-
dated is the hyperphosphorlyation of p80. Fusion of
ALK with NPM leads to hyperphosphorylation of p80
and its constitutional activation. This constitutionally ac-
tive p80 is localized to the cytoplasm and catalyzes the
phosphorylation of SH2 domain-containing transforming
protein (SHC), an adaptor protein, and insulin receptor
substrate 1 (IRS-1) with downstream effects on RAS and
epidermal growth factor receptor (EGFR) pathways [12].
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Other mechanisms that have been unearthed mainly
occur through the Jun set of proteins [13,14]. Jun (cJun,
JunB and JunD) are members of the activated protein 1
(AP-1) transcription factor complex. cJun is regulated by
the NPM-ALK tyrosine kinase via pathologic phosphor-
ylation and subsequent activation of cJun N-terminal
kinase (JNK), the protein kinase capable of phosphoryl-
ating serine residues in the N-terminal of cJun and
effecting its subsequent activation [13]. JNK is only
physiologically phosphorylated by the mitogen activated
protein kinase (MAPK) kinases MKK4 and MKK7. How-
ever, in the ALCL cells, JNK is phosphorylated by NPM-
ALK which in turn phosphorylates and activates cJun.
Activated cJun causes the transcriptional activation of

cell cycle proteins (Cyclin D1, Cyclin D3, Cyclin A and
Cyclin E) and the inhibition of tumor suppressors such
as p53, p21Cip1 and p16Ink4. This is mediated through
the recruitment of cAMP response element binding
(CREB) protein (CBP) activator [13]. JunB, another mem-
ber of the Jun subset of AP–1 complex, is also a positive
regulator of cell cycle progression [14]. NPM-ALK also in-
creases JunB expression through the mTOR pathway.
mTOR is activated by the phosphoinositol 3- kinase/Akt
pathways [14,15].
NPM-ALK has also been shown to act through the sig-

nal transducer and activator of transcription (STAT),
principally STAT3 and STAT5 [16-19]. STAT3, for ex-
ample, is constitutionally activated by NPM-ALK phos-
phorylation and is actively involved in the malignant
transformation of NPM-ALK expressing lymphocytes
[17]. Activated STAT3 enhances the positive autocrine
loop involving IL-6 and the IL-6 receptor (IL6R), which
in turn up-regulates the expression of Bcl-xL and survi-
vin, two anti-apoptotic factors [18]. STAT5 activation
also is thought to protect cells from apoptosis, likely
from activation of anti-apoptotic factors such as A1 (or
its human homologue, Bfl-1), Bcl-xL, pim-1 and oncos-
tatin M [16].
Another mechanism for NPM-ALK oncogenesis has

been elucidated as occurring through the phosphoryl-
ation of p60c-src. p60c-src is a src kinase which plays spe-
cific roles in downstream effects of the T-cell receptor
and causes hematopoietic growth factor independence
specifically of IL-3 and granulocyte-macrophage colony
stimulating factor (GM-CSF) [20]. Activated Src kinase
can lead to activation of NPM-ALK with downstream ef-
fects on PI3K/Akt. The effect of ALK on PLC-γ, Shc,
IRS-1 and PI3K has been shown to be mediated through
pleiotrophin, the ligand for the ALK receptor [21].
Apart from the NPM-ALK mutation, TPM3-ALK mu-

tation caused by the (1;2)(q25;p23) translocation fused
ALK with TPM3 gene located on 1q25 [22-24]. TPM3
encodes a non-muscular tropomyosin protein. Tropomy-
osins are actin binding proteins that mediate the effect
of ionized calcium on actin-myosin interaction in skel-
etal muscle cells [22]. TPM3 has been shown to be fused
with the NTRK1 tropomyosin receptor kinase in ALCL
and papillary thyroid cancers [22,25,26]. Another tropo-
myosin gene, TPM4, has also been found to be fused to
the ALK gene in inflammatory myofibroblastic tumors
(IMT) and other tumors [24,27-30].
Another ALK mutation from fusion of ALK to the

ATIC gene has been described [31,32]. ATIC gene en-
codes the 5-aminoimidazole-4-carboxamide ribonucleo-
tide formyltransferase/IMP cyclohydrolase (AICARFT/
IMPCH) bifunctional enzyme. This enzyme catalyzes the
last two steps in the purine synthesis pathway. The fu-
sion gene becomes constitutionally active, leading to
pathologic activation of ALK. Additional mutations identi-
fied in both solid tumors and hematological malignancies
include MSN-ALK, MYH9-ALK, RANBP2–ALK, CARS-
ALK, CLTCL-ALK [3,33-44]. Rare mutations have been
described in NSCLC, lymphoma, renal cell carcinoma and
colon cancer [37,45-58] (Tables 1 and 2).
EML4-ALK fusion gene was initially identified in 2007

in non-small cell lung cancer (NSCLC) [59]. This has fa-
cilitated the development of the first ALK inhibitor, cri-
zotinib [60]. This mutation arises from inv(2)(p21p23)
which leads to the fusion of echinoderm microtubule-
associated protein like-4 (EML4) gene with ALK gene.
The fusion protein plays a pivotal role in the malignant
transformation of susceptible lung parenchyma [61].
EML4 is a member of the EML protein (EMAP) family
and plays an important role in the correct formation of
microtubules [62]. The EML4-ALK fusion kinase has an
ALK fragment identical to the ALK fragment in NPM-
ALK. This intracellular kinase is bound to the amino-
terminal coiled-coil domain of EML4 and is thought to
be responsible for the transforming activity of the fusion
protein [23,63-65].

ALK inhibitors in clinical use
Two small molecule inhibitors, crizotinib and ceritinib,
of ALK kinase are in clinical use now, several more are
in active clinical development (Table 3).

Crizotinib
Crizotinib (PF-02341066, Xalkori, Pfizer) is an orally ac-
tive small molecule inhibitor of ALK, c-MET/hepatocyte
growth factor receptor (HGFR) kinase and ROS1 recep-
tor tyrosine kinase [66,67]. Since August 2011, crizotinib
has been approved for treatment of locally advanced or
metastatic NSCLC that are ALK positive [60,68-70].
The maximum dose reached in the phase I dose escal-

ation trials for crizotinib was 250 mg twice daily, which
was therefore selected for an expanded cohort of 82 pa-
tients with advanced ALK-positive NSCLC [70]. Out of
82 patients, 46 had confirmed partial response (PR) and



Table 1 Chromosomal translocation and fusion proteins
in solid tumors involving ALK gene

Disease Chromosomal
rearrangement

Fusion
protein

Frequency
(%)

Reference

NSCLC inv(2)(p21;p23) EML4-ALK 2-5 [59,64,65]

t(2;3)(p23;q21) TFG-ALK 2 [65]

t(2;10)(p23;p11) KIF5B-ALK <1 [53,57]

t(2;14)(p23;q32) KLC1-ALK <5 [55]

t(2;9)(p23;q31) PTPN3-ALK ND [50]

IMT t(1;2)(q25;p23) TPM3-ALK 0.5 [24]

t(2;19)(p23;p13) TPM4-ALK <5 [24]

t(2;17)(p23;q23) CLTC-ALK <5 [40,42,43]

inv(2)(p23;q35) ALK-ATIC <5 [32]

t(2;11;2)(p23;p15;q31) CARS-ALK <5 [34,35]

t(2;2)(p23;q13) RANBP2-ALK <5 [36]

inv(2)(p23;p15;q31) RANBP2-ALK <5 [38]

t(2;4)(p23;q21) SEC31L1-ALK <5 [52]

BC inv(2)(p21;p23) EML4-ALK <5 [64]

CRC inv(2)(p21;p23) EML4-ALK <5 [64]

t(2;2)(p23.3) C2orf44-ALK <5 [51]

ESCC t(2;19)(p23;p13) TPM4-ALK ND [27,28]

RCC t(2;10)(p23;q22) VCL-ALK ND [47]

t(1;2)(q25;p23) TPM3–ALK ND [23]

inv(2)(p21;p23) EML4–ALK ND [23]

NSCLC; non small cell lung cancer, IMT; inflammatory myofibroblastic tumor,
BC; breast cancer, CRC; colorectal cancer, ESCC; esophageal squamous cell
carcinoma, RCC; renal cell carcinoma, ND; not determined.

Table 2 Chromosomal translocations and fusion proteins
in hematologic malignancies involving ALK gene

Disease Chromosomal
rearrangement

Fusion
protein

Frequency
(%)

Reference

ALCL t(2;5)(p23;q35) NPM-ALK 75-80 [9]

t(2;17)(p23;q25) ALO17-ALK <1 [34]

t(2;3)(p23;q21) TFG-ALK 2 [48]

t(2;X)(p32;q11-q12) MSN-ALK <1 [44]

t(1;2)(q25;p23) TPM3-ALK 12-18 [22]

t(2;19)(p23;p13) TPM4-ALK <1 [30]

inv(2)(p23;q35) ATIC-ALK 2 [31]

t(2;22)(p23;q11.2) MYH9-ALK <1 [37]

t(2;17)(p23;q23) CLTCL-ALK 2 [58]

DLBCL t(2;5)(p23;q35) NPM-ALK ND [10]

t(2;17)(p23;q23) CLTC1-ALK ND [41]

t(2;5)(p23.1;q35.3) SQSTM1-ALK ND [54]

ins(4)(2;4)(p23;q21) SQSTM1-ALK ND [56]

t(2;4)(p24;q21) SEC31A-ALK ND [45]

HL t(2;5)(p23;q35) NPM-ALK ND [1]

ALCL; anaplastic large cell lymphoma, DLBCL; diffuse large B cell lymphoma;
HL: Hodgkin lymphoma; ND; not determined.
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1 confirmed complete response (CR) with an impressive
overall response (OR) of 57%. The estimated progression
free survival (PFS) was 72%. These results were upheld
in an updated report in which 87 of 143 patients had an
OR of 60.8% (95% CI 52.3-68.9), including 3 CR and 84
PR. Median PFS was 9.7 months (95% CI 7.7-12.8), esti-
mated overall survival at 6 and 12 months was 87.9%
(95% CI 81.3-92.3) and 74.8% (66.4-81.5) respectively.
Most common drug related adverse events were grade 1
or 2, including visual effects, nausea, vomiting, constipa-
tion, diarrhea and peripheral edema. The most common
grade 3 and grade 4 adverse events were neutropenia
(n = 9), elevated alanine aminotransferase (n = 6), hypo-
phosphatemia (n = 6), and lymphopenia (n = 6) [68].
PROFILE 1005 was a global, multicenter, open label, single
arm phase 2 study evaluating safety and efficacy of crizo-
tinib (250 mg oral bid every 3 weeks) in patients with ad-
vanced ALK positive NSCLC who progressed after more
than one cycle of chemotherapy [69]. Of the 255 patients
evaluated for tumor response, ORR was 53% (95% CI:
46–60) and disease control rate at 12 weeks was 85%
(95% CI: 80–89). Median PFS was 8.5 months (95% CI:
6.2-9.9) and median duration of response was 43 weeks
(96% CI: 36–50). PROFILE 1007, a phase 3 study compar-
ing crizotinib to standard chemotherapy (premetrexed or
docetaxel) was updated in 347 patients previously treated
with first line platinum based chemotherapy. The median
PFS was 7.7 months in crizotinib group (n = 173) com-
pared to 3.0 in chemotherapy group (n = 174), hazard
ratio of crizotinib to chemotherapy was 0.49 (95% CI:
0.37-0.67); p < 0.001). The ORR was 65% (95% CI: 58–
72) with crizotinib compared to 20% (95% CI: 14–26)
with chemotherapy (p < 0.001) [60]. Currently another
phase 3 study, PROFILE 1014, is evaluating crizotinib
vs. chemotherapy in patients with advanced ALK posi-
tive NSCLC patients as a first line therapy [71]. At the
last update in ASCO 2014 annual meeting, 343 pts with
untreated advanced non-squamous ALK-positive NSCLC
were treated with either crizotinib 250 mg PO BID (n =
172) or PPC (pemetrexed 500 mg/m2 + either cisplatin
75 mg/m2 or carboplatin AUC 5–6; all IV q3w for
<=6 cycles; n = 171). The primary endpoint was PFS.
After disease progression, crossover to crizotinib was
allowed for pts on PPC. Superiority of crizotinib over
PPC in prolonging PFS (median 10.9 vs. 7.0 mo; HR:
0.454; 95% CI: 0.346–0.596; P < 0.0001) was reported.
Crizotinib showed higher ORR than PPC (74% vs. 45%;
P < 0.0001) [71].
Unfortunately majority of patients invariably develop

resistance to crizotinib during the first year [60,68].
Mechanism of acquired resistance to crizotinib can be
classified into three well-recognized categories. These
are the development of new ALK domain mutations;



Table 3 ALK inhibitors in clinical use and development

Drug Phase Tumors Common toxicities Reference

Crizotinib III NSCLC Visual disturbance, nausea, vomiting,
constipation, edema

[68-71]

Alectinib II/III NSCLC, ALCL, neuroblastoma Neutropenia, elevated CPK [79-82]

Ceritinib II/III NSCLC Diarrhea, elevated transaminases [86-91]

AP-26113 I/II NSCLC Nausea, fatigue, diarrhea [92-94]

ASP-3026 IB NSCLC Nausea, vomiting, constipation,
abdominal pain

[95,96]

X-376 Preclinical NSCLC, ALCL, neuroblastoma cell lines N/A [98]

X-396 Preclinical NSCLC, ALCL, neuroblastoma cell lines N/A [98]

TSR-011 I/II NSCLC, pancreatic, ovarian, and salivary gland cancers Dysaesthesia, QTc prolongation [99]

CEP-37440 I NSCLC, SCCHN, colorectal, pancreatic, prostate, and
breast cancers

Nausea, vomiting, diarrhea headaches [100]

NMS-E628 I/II advanced solid tumors N/A [102]

PF-06463922 I/IIA NSCLC N/A [103]

ALCL-anaplastic large cell lymphoma; CPK-creatine phosphokinase; N/A-not available; NSCLC-non-small cell lung cancer; SCCHN-squamous cell cancer of head and neck.
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amplification of the EML4-ALK gene and activation of
alternating pathways that bypass the ALK pathway. Two
secondary mutations, L1196M and C1156Y, within the
kinase domain of EML4-ALK in tumor cells were re-
ported in a patient during the relapse phase of treatment
with an ALK inhibitor. These developed independently
in subclones of the tumor cells and conferred marked
resistance to two different ALK inhibitors [46]. L1196M
gatekeeper mutation results from substitution of leucine
by methionine at position 1196 of the ALK kinase do-
main. This mutation alters the ATP-binding site of ALK
and interferes with the binding of inhibitor. C1156Y muta-
tion in the ALK domain involves substitution of a cysteine
by tyrosine at position 1156. Several other mutations of
ALK kinase domain have been reported so far, G1269A,
L1152R, G1202R, 1151Tins and S1206Y [72-76]. The sec-
ond well established mechanism of crizotinib resistance is
the amplification of EML4-ALK fusion gene through two
methods, more copies per cell and more cells displaying
the rearrangement pattern [72,73]. The third category of
acquired resistance to ALK agents represents the activa-
tion of alternating signaling pathways bypassing ALK. The
EML4-ALK fusion protein is one of the client proteins for
heat shock protein 90 (Hsp90), which is a molecular
chaperone that regulates the correct folding, stability, and
function of numerous client proteins. Ganetepib, which is
an Hsp90 inhibitor, has been shown to be effective in pa-
tients with secondary ALK mutations and in tumor cells
with ALK amplification [77]. Hsp90 inhibition has been
shown to cause regression of EML4-ALK driven xenograft
of lung adenocarcinomas [78]. EGFR up-regulation has
also been observed in ALK positive tumor cell lines re-
sistant to crizotinib [72,74]. These mechanisms can
occur independently, or simultaneously, suggesting that
the combination of both ALK and EGFR inhibitors may
represent an effective therapy for this specific subset of
NSCLC patients [72,74]. KIT gene amplification has also
been identified as a potential bypass signaling pathway in
crizotinib resistant patients. This resistance mechanism
likely involves support by the cancer stroma since stem
cell factor (SCF), the KIT ligand, is produced specific-
ally in the stroma of resistant cancer cells with KIT
amplification [72].
Therefore, there is a unmet need for novel ALK inhibi-

tors that can overcome these resistance mechanisms.
The development of a range of new ALK inhibitors is
underway both in pre-clinical and clinical studies.

Alectinib (CH-5424802, AF-802, RO05424802)
Alectinib, also known as AF-802, CH-5424802 or RO-
5424802, is a highly selective, orally bioavailable ALK
inhibitor with ten-fold greater potency than crizotinib
in kinase assays (IC50, 1.9nM) [79,80]. A carbonitrile
derivative, alectinib has potent efficacy against ALK
addicted tumors, such as NSCLC expressing EML4-
ALK, ALCL expressing NPM-ALK, and ALK amplified
neuroblastoma [79]. The compound has also exhibited
substantial inhibitory property against mutant ALK en-
zymes including ALK L1196M, ALK F1174L, and ALK
R1275Q [79].
In July 2014, alectinib was granted approval in Japan

for the treatment of patients with recurrent/relapsed
ALK+ NSCLC [81]. Similarly, the compound has gained
Breakthrough Therapy Designation (BTD) by the U.S.
FDA in patients with ALK+ NSCLC who had progressed
on crizotinib. In an initial phase I dose-escalation portion
of the AF-001JP study, treatment of 24 crizotinib-naïve
patients with recurrent/relapsed ALK+ NSCLC with alec-
tinib at doses ranging from 20–300 mg twice daily was
found to be safe and well tolerated [81]. No DLTs were
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observed and 300 mg twice daily was chosen as the rec-
ommended phase II dose [81]. In the subsequent ex-
panded phase II part of the trial, the agent exhibited
clinical activity achieving an ORR of approximately
ninety-four percent including 2 CR and 41 PR in 46 pa-
tients evaluable for response [81]. The most serious ad-
verse events noted were neutropenia and elevated creatine
phosphokinase levels [81]. Similarly, alectinib has demon-
strated promising antitumour activity in patients with
ALK-rearranged NSCLC resistant to crizotinib, including
those with CNS metastases. The phase I/II study con-
ducted by Gadgeel and colleagues showed that alectinib
was associated with acceptable toxicity profile in patients
who progressed on or were intolerant to crizotinib [82].
No new safety signal emerged; however grade 3 headaches
and neutropenia were identified as DLTs in a cohort of pa-
tients who received alectinib 900 mg twice a day [82]. The
ORR in 44 out of forty-seven patients evaluable for re-
sponse was 55%, including 1 CR and 23 PR, and sixteen
patients had stable disease after a median follow-up of
126 days [82] . Interestingly, a subset analysis of 21 pa-
tients with CNS metastases at baseline enrolled in the
study showed a disease control rate of approximately
90%. In contrast to the precedent study [81], this recent
trial chose alectinib 600 mg twice a day as the recom-
mended dose for subsequent phase 2 studies [82].
Given these favorable results, ALEX, a phase III ran-
domized trial has been initiated to compare alectinib
with crizotinib in treatment-naïve ALK-positive ad-
vanced NSCLC patients. The study primary endpoint is
PFS and the estimated completion date is December
2017 [NCT02075840]. Alectinib was recently reported
to be active in crizotinib-resistant NSCLC patients with
leptomeningeal metastasis [83].

Ceritinib (LDK378)
Ceritinib (LDK378, Celgene) is a potent and selective
small molecule tyrosine kinase inhibitor of ALK [84,85].
Ceritinib was shown to be active in NSCLC resistant to
crizotinib [86-88]. Preliminary results of a multicenter
phase I study of LDK378 were presented at the 48th
ASCO annual meeting [89]. Among the 131 patients
with advanced malignancies harboring a genetic alter-
ation in ALK, 59 patients were enrolled in the dose es-
calation phase during which a maximum treatment dose
(MTD) of 750 mg was established, and 72 patients in a
dose expansion cohort at MTD. In the 123 NSCLC pa-
tients, median PFS was 8.6 months (95% CI, 4.3-19.3). In
88 evaluable NSCLC patients who received LDK378 at
doses of 400–750 mg daily, the overall response rate
(ORR) was 70%. ORR was 73% in a subset of 64 patients
who had developed crizotinib resistance. LDK378 was
well tolerated. There was no treatment related death and
the most common grade 3/4 adverse effects were elevated
ALT (12%), diarrhea (7%) and AST elevation (6%). These
were updated in a recent publication [90]. Currently two
phase II studies are undergoing, the first (NCT01685060)
evaluating LDK378 in ALK activated NSCLC patients pre-
viously treated with chemotherapy and crizotinib; and the
second (NCT01685138) in ALK activated NSCLC pa-
tient’s naïve to crizotinib +/–chemotherapy. A Phase III
multicenter, randomized study (NCT01828099) is evaluat-
ing LDK378 versus standard chemotherapy in previously
untreated adult patients with ALK-positive, stage IIIB or
IV, NSCLC. Another phase III study is evaluating the anti-
tumor activity of ceritinib versus chemotherapy in patients
previously treated with platinum based chemotherapy and
crizotinib (NCT01828112). Ceritinib has recently been ap-
proved for use in NSCLC patients who have progressed
on or are intolerant to crizotinib [91].

Novel ALK inhibitors in clinical development
Multiple new ALK inhibitors are being developed, each
with its own unique set of characteristics as detailed
below.

AP26113
AP26113 is a potent and selective ALK inhibitor [92].
AP26113 induced tumor regression in BaF3 xenograft
model expressing EML4-ALK, and EML4-ALK harbor-
ing G1269S and L1196M (gatekeeper) mutations. In pre-
clinical studies, AP26113 was shown to be active against
all 9 clinically-identified crizotinib-resistant mutants
tested [93]. AP26113 is also a potent, reversible inhibitor
of activated and T790M-mutant EGFR, yet it does not
inhibit the native enzyme [94]. A phase I/II study was
initiated (NCT01449461) to evaluate AP26113 as a dual
ALK/mutant EGFR inhibitor. As of 14 Jan 2013, 44 pa-
tients were enrolled including 37 with NSCLC [94]. In
the dose escalation phase (30-300 mg), two dose limiting
toxicities were observed, grade 3 ALT elevations at
240 mg and grade 4 dyspnea at 300 mg. The recom-
mended phase II dose was identified as 180 mg. The
most common adverse effects were nausea (45%), fatigue
(39%), diarrhea (27%). Among 18 evaluable ALK+ pa-
tients, four out of 5 patients with CNS lesions showed
improvement on follow up imaging, including one pa-
tient resistant to crizotinib and ceritinib. Sixteen patients
had EGFR mutation (EGFRm). Of 12 patients with
EGFRm, one patient responded at 120 mg (duration
21 weeks, ongoing) and 6 patients had stable disease (2
ongoing, duration 7 and 31 weeks, respectively). In a
later update, 114 pts were enrolled: 65 in phase 1 (30–
300 mg) and 49 in phase 2 (180 mg) [93]. There were
106 pts with NSCLC. The most common treatment-
emergent AEs (20%) were similar to the previous report.
Early onset of pulmonary symptoms (dyspnea with hyp-
oxia and/or findings on imaging) were observed in 6/45
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(13%) pts at 180 mg QD. These symptoms needed ur-
gent intervention. The respiratory symptoms were not
observed at 90 mg QD (n = 8) or in the lead-in dose co-
hort (n = 19; initiated at 90 mg QD, escalated to 180 mg
QD after 1 wk). Therefore, further enrollment with this
dose escalation scheme, and an additional cohort of
90 mg QD without escalation were being added. Among
38 evaluable ALK+ NSCLC pts who had prior crizotinib,
24 (63%) reported response, including one CR. Six of 10
pts enrolled with untreated or progressing brain metasta-
ses showed response in brain, including 4 with complete
resolution; 2 stable disease, 2 progressed; AP26113 has
promising anti-tumor activity in pts with crizotinib-
resistant ALK+ NSCLC, including pts with brain metasta-
ses. A randomized phase 2 trial of AP26113 comparing
90 mg QD vs. 90 mg QD escalating to 180 mg QD in
crizotinib-resistant ALK+ NSCLC was planned.

ASP3026
ASP3026 is an oral, selective, potent, ATP competitive
small molecule inhibitor of ALK with an IC50 of 3.5nM
for ALK [95,96]. A phase I dose escalation trial was initi-
ated to evaluate the safety and clinical activity of
ASP3026 in patients with advanced malignancies (ex-
cluding leukemia) (NCT01284192). Thirty patients were
enrolled in the dose escalation (25–800 mg) part of the
study. The most common AEs were constipation, vomit-
ing, nausea and abdominal pain. Grade 3 rash and ALT/
AST elevation were dose-limiting. The MTD was estab-
lished as 525 mg QD with a promising safety and phar-
macokinetic (PK) profile in patients with advanced
malignancies [95]. Patients (pts) with advanced solid tu-
mors were treated with ASP3026 under fasting conditions
without interruption in 3 + 3 dose escalation, “fast fol-
lower” phase I trial [97]. The cohorts received ASP3026
from 25 to 800 mg once daily (QD). At the last report for
2014 ASCO annual meeting, 33 patients were enrolled in
the dose escalation phase, including 3 ALK+ pts, The
phase Ib expansion cohort enrolled another 13 ALK+ pts
[total pts N = 46; median (range) age = 61 (19–77) years].
Nausea /vomiting, rash and ALT/AST elevation were dose
limiting toxicities. The MTD was 525 mg daily which be-
came the recommended phase 2 dose (RP2D). The most
common AEs were fatigue, and GI toxicities. Of 15 pts
with ALK+ NSCLC who failed prior crizotinib, 7 (44%)
had a PR and 8 had stable disease. The “fast follower” de-
sign allowed enrollment of ALK+ pts who achieved PR be-
fore the MTD of 525 mg QD was identified. Clinical
activity was seen in the phase I trial in ALK+ NSCLC pts
who failed crizotinib (NCT01401504).

ALK inhibitors in early phase development
X-376 and X-396 are novel, potent and specific ALK in-
hibitors with an aminopyridazine-based structure shared
by crizotinib. X-396 had a 10 fold higher potency as
compared to crizotinib across various cancer cell lines
[98]. In addition, X-396 seems to be active against ALK
mutants resistant to crizotinib. It has also been shown to
penetrate blood–brain barrier.
TSR-011 is a dual ALK/TRK inhibitor developed by

Tesaro, Inc., Waltham, MA, USA. It is currently recruit-
ing in a phase I/IIa trial (NCT02048488) [99]; Prelimin-
ary results showed a dose range of 30–480 mg, with the
DLTs to be dysaesthesia and QTc prolongation. PK mod-
eling has identified 60 mg to have minimal peak expos-
ure with sustained trough concentrations above IC50
required for ALK inhibition. Three of 5 patients with
ALK+ NSCLC have achieved PR.
CEP-37440 is a dual ALK/FAK inhibitor currently

under investigation in a phase I trial (NCT01922752).
Focal adhesion kinase (FAK) is a ubiquitously expressed
non-receptor tyrosine kinase implicated in cell adhesion
and cell membrane-extracellular matrix interactions. It
is thought to be involved in the carcinogenesis of colon
cancer and other tumors of epithelial origin [100,101].
NMS-E628 (RXDX-101) is an orally available ALK/

ROS-1 Inhibitor. It has been shown to induce complete
regression of NSCLC and ALK+ leukemia cells in vitro
and in vivo [102]. Currently a phase I/IIa trial studying
RXDX-101 (NCT02097810) in locally advanced and
metastatic solid tumors is in the recruitment phase.
PF-06463922 is a novel dual inhibitor of ALK/ROS1

with unusual activity against ROS1 kinase. PF-06463922
has IC50 values ranging from 0.1 nM to 1 nM toward
ROS kinase inhibition. It was shown to be active across
a panel of cell lines harboring ROS1 fusion variants in-
cluding CD74-ROS1, SLC34A2-ROS1 and Fig-ROS1.
This agent was developed to increase CNS availability
and widen the spectrum of activity from crizotinib [103].
It has also been shown to overcome the crizotinib resist-
ant CD74-ROS1G2032R mutant. In addition, cyclin D1
was found to be suppressed by this inhibitor in vitro
[104]. A phase I/IIa trial (NCT01970865) is currently in
the recruitment phase.

Conclusion and future directions
More and more novel agents for targeted therapy of lung
cancers are rapidly migrating from bench to bedside
[19,89,105-110]. Over the past decade, multiple small mol-
ecule inhibitors with activity against ALK and related
oncoproteins have been developed [3]. Two of them, cri-
zotinib and ceritinib, have gone on to get FDA approval
for clinical use in locally advanced and metastatic NSCLC.
More agents with improved safety, selectivity, potency and
efficacy profiles are in the pipeline. Dual inhibitors target-
ing ALK as well as EGFRm, TRK, FAK, or ROS1 are under
active clinical development. These agents may have the
potential to concur the emerging mutants which become
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resistant to crizotinib and other agents in refractory and
relapsed NSCLC and other solid tumors.
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