2,719 research outputs found

    Itinerant chiral ferromagnetism in a trapped Rashba spin-orbit coupled Fermi gas

    Get PDF
    How ferromagnetic phases emerge in itinerant systems is an outstanding problem in quantum magnetism. Here we consider a repulsive two-component Fermi gas confined in a two dimensional isotropic harmonic potential and subject to a large Rashba spin-orbit (SO) coupling, whose single-particle dispersion can be tailored by adjusting the SO coupling strength. We show that the interplay among SO coupling, correlation effects and mean-field repulsion leads to a competition between ferromagnetic and non-magnetic phases. At intermediate interaction strengths, ferromagnetic phase emerges which can be well described by the mean-field Hartree-Fock theory; whereas at strong interaction strengths, a strongly correlated non-magnetic phase is favored due to the beyond-mean-field quantum correlation effects. Furthermore, the ferromagnetic phase of this system possesses a chiral current density induced by the Rashba spin-orbit coupling, whose experimental signature is investigated.Comment: Main text: 5 pages, 6 figures; Supplement: 4 pages, 2 figure

    A Method for Neuronal Source Identification

    Full text link
    Multi-sensor microelectrodes for extracellular action potential recording have significantly improved the quality of in vivo recorded neuronal signals. These microelectrodes have also been instrumental in the localization of neuronal signal sources. However, existing neuron localization methods have been mostly utilized in vivo, where the true neuron location remains unknown. Therefore, these methods could not be experimentally validated. This article presents experimental validation of a method capable of estimating both the location and intensity of an electrical signal source. A four-sensor microelectrode (tetrode) immersed in a saline solution was used to record stimulus patterns at multiple intensity levels generated by a stimulating electrode. The location of the tetrode was varied with respect to the stimulator. The location and intensity of the stimulator were estimated using the Multiple Signal Classification (MUSIC) algorithm, and the results were quantified by comparison to the true values. The localization results, with an accuracy and precision of ~ 10 microns, and ~ 11 microns respectively, imply that MUSIC can resolve individual neuronal sources. Similarly, source intensity estimations indicate that this approach can track changes in signal amplitude over time. Together, these results suggest that MUSIC can be used to characterize neuronal signal sources in vivo.Comment: 14 pages, 5 figure

    Exposure of the Hidden Anti-Ferromagnetism in Paramagnetic CdSe:Mn Nanocrystals

    Full text link
    We present theoretical and experimental investigations of the magnetism of paramagnetic semiconductor CdSe:Mn nanocrystals and propose an efficient approach to the exposure and analysis of the underlying anti-ferromagnetic interactions between magnetic ions therein. A key advance made here is the build-up of an analysis method with the exploitation of group theory technique that allows us to distinguish the anti-ferromagnetic interactions between aggregative Mn2+ ions from the overall pronounced paramagnetism of magnetic ion doped semiconductor nanocrystals. By using the method, we clearly reveal and identify the signatures of anti-ferromagnetism from the measured temperature dependent magnetisms, and furthermore determine the average number of Mn2+ ions and the fraction of aggregative ones in the measured CdSe:Mn nanocrystals.Comment: 26 pages, 5 figure

    A Simple One-Scale Constitutive Model for Static Liquefaction of Sand-Silt Mixtures

    Get PDF
    Instability of liquefaction is one of the major reasons which results in the failure of earth structure such as dam. The present study focuses on the simulation of static liquefaction behavior for granular materials such as sand and sand-silt mixtures. Based on micromechanical analysis of inter-particle behavior, a simple one-scale model is proposed to simulate the stress-strain response of sand; then the proposed model is extended to simulate the sand-silt mixtures using the mixture theory combining the properties of sand and silt according to their proportions. Empirical expressions are introduced to fit the critical state strength and the location of the critical state line for each mixture. Parameters of the model can be divided into two categories: the first seven parameters have the same values either with pure sand or pure silt for silt-sand with any given fines content; the other three parameters are the function of fines content and three more parameters are required to estimate their values. The predicted results of triaxial test of sand and sand-silt mixtures with different fine content, which has a good agreement with the results of laboratory tests, suggest that the proposed model can simulate static liquefaction behavior of sand and sand-silt mixtures

    Development of the NTP Pool Project in Taiwan

    Get PDF
    Among the standard time reporting systems, the Network Time Protocol (NTP) provides an easy and accurate way for the accessing the Universal time. The NTP is taking the benefit of the pervasiveness of the computer network during the recent information-oriented modern world. The NTP Pool Project is the project to provide a distributed framework of the NTP servers. As the ever-increasing amounts of the requests of the standard time, the number of the NTP servers provided by the NTP Pool Project will be extended correspondingly. This paper will provide the detailed introduction on the framework of the NTP Pool Project, the development of the NTP Pool Project in Taiwan at the present time, and the followed by the suggestions of the implementation of the NTP pool project
    • …
    corecore