959 research outputs found

    Anomalous Phase Shift of Quantum Oscillations in 3D Topological Semimetals

    Get PDF
    Berry phase physics is closely related to a number of topological states of matter. Recently discovered topological semimetals are believed to host a nontrivial π\pi Berry phase to induce a phase shift of ±1/8\pm 1/8 in the quantum oscillation (++ for hole and −- for electron carriers). We theoretically study the Shubnikov-de Haas oscillation of Weyl and Dirac semimetals, taking into account their topological nature and inter-Landau band scattering. For a Weyl semimetal with broken time-reversal symmetry, the phase shift is found to change nonmonotonically and go beyond known values of ±1/8\pm 1/8 and ±5/8\pm 5/8. For a Dirac semimetal or paramagnetic Weyl semimetal, time-reversal symmetry leads to a discrete phase shift of ±1/8\pm 1/8 or ±5/8\pm 5/8, as a function of the Fermi energy. Different from the previous works, we find that the topological band inversion can lead to beating patterns in the absence of Zeeman splitting. We also find the resistivity peaks should be assigned integers in the Landau index plot. Our findings may account for recent experiments in Cd2_2As3_3 and should be helpful for exploring the Berry phase in various 3D systems.Comment: 5 pages, 3 figures, with Supplemental Materia

    Entanglement production and decoherence-free subspace of two single-mode cavities embedded in a common environment

    Full text link
    A system consisting of two identical single-mode cavities coupled to a common environment is investigated within the framework of algebraic dynamics. Based on the left and right representations of the Heisenberg-Weyl algebra, the algebraic structure of the master equation is explored and exact analytical solutions of this system are obtained. It is shown that for such a system, the environment can produce entanglement in contrast to its commonly believed role of destroying entanglement. In addition, the collective zero-mode eigen solutions of the system are found to be free of decoherence against the dissipation of the environment. These decoherence-free states may be useful in quantum information and quantum computation.Comment: 10 pages, 7 figures, Revtex

    Production of squeezed state of single mode cavity field by the coupling of squeezed vacuum field reservoir in nonautonomous case

    Full text link
    The dissipative and decoherence properties as well as the asymptotic behavior of the single mode electromagnetic field interacting with the time-dependent squeezed vacuum field reservoir are investigated in detail by using the algebraic dynamical method. With the help of the left and right representations of the relevant hw(4)hw(4) algebra, the dynamical symmetry of the nonautonomous master equation of the system is found to be su(1,1)su(1,1). The unique equilibrium steady solution is found to be the squeezed state and any initial state of the system is proved to approach the unique squeezed state asymptotically. Thus the squeezed vacuum field reservoir is found to play the role of a squeezing mold of the cavity field.Comment: 5 pages, no figure, Revtex

    Probing onset of strong localization and electron-electron interactions with the presence of direct insulator-quantum Hall transition

    Full text link
    We have performed low-temperature transport measurements on a disordered two-dimensional electron system (2DES). Features of the strong localization leading to the quantum Hall effect are observed after the 2DES undergoes a direct insulator-quantum Hall transition with increasing the perpendicular magnetic field. However, such a transition does not correspond to the onset of strong localization. The temperature dependences of the Hall resistivity and Hall conductivity reveal the importance of the electron-electron interaction effects to the observed transition in our study.Comment: 9 pages, 4 figure

    Equation of motion approach to the solution of Anderson model

    Full text link
    Based on an equation of motion approach the single impurity Anderson model(SIAM) is reexamined. Using the cluster expansions the equations of motion of Green functions are transformed into the corresponding equations of motion of connected Green functions, which provides a natural and uniform truncation scheme. A factor of two missing in the Lacroix's approximation for the Kondo temperature is gained in the next higher order truncation beyond Lacroix's. A quantitative improvement in the density of states at the Fermi level is also obtained.Comment: 4 pages, 2 figure

    SCintillation and IONosphere eXtended (SCION-X): A 12U CubeSat for Ionospheric and Atmospheric Science

    Get PDF
    SCION-X (SCintillation and IONosphere eXtended) is a 12U CubeSat that is being designed and developed by Upper Air Dynamics Laboratory, National Central University (NCU). SCION-X is the second funded CubeSat project being developed by NCU and is the largest self-developed spacecraft to date. This mission will help to further understand the variation of ionospheric irregularities, remote sensing methods for PM2.5 pollution distribution, and thermospheric photochemistry while serving as a relay station for amateur radio. Furthermore, it will help increase the communication and cooperation between universities in developing spaceflight capacity
    • …
    corecore