565 research outputs found

    Perturbation of Retinoid Homeostasis Increases Malformation Risk in Embryos Exposed to Pregestational Diabetes

    Get PDF
    Funding. This work was supported by funding from Hong Kong Research Grants Council General Research Fund project reference 441606 and 474109 to A.S.W.S., Y.C.L., C.C.W., P.J.M. and A.J.C..Peer reviewedPostprin

    An experimental study investigating the effect of pain relief from oral analgesia on lumbar range of motion, velocity, acceleration and movement irregularity

    Get PDF
    Background Movement alterations are often reported in individuals with back pain. However the mechanisms behind these movement alterations are not well understood. A commonly cited mechanism is pain. The aim of this study was to investigate the effect of pain reduction, from oral analgesia, on lumbar kinematics in individuals with acute and chronic low back pain. Methods A prospective, cross-sectional, experimental repeated-measures design was used. Twenty acute and 20 chronic individuals with low back pain were recruited from General Practitioner and self-referrals to therapy departments for low back pain. Participants complained of movement evoked low back pain. Inertial sensors were attached to the sacrum and lumbar spine and used to measure kinematics. Kinematic variables measured were range of motion, angular velocity and angular acceleration as well as a determining movement irregularity (a measure of deviation from smooth motion). Kinematics were investigated before and after administration of oral analgesia to instigate pain reduction. Results Pain was significantly reduced following oral analgesia. There were no significant effects on the kinematic variables before and after pain reduction from oral analgesia. There was no interaction between the variables group (acute and chronic) and time (pre and post pain reduction). Conclusion The results demonstrate that pain reduction did not alter lumbar range of motion, angular velocity, angular acceleration or movement irregularity questioning the role of pain in lumbar kinematics

    Evidence for directional selection at a novel major histocompatibility class I marker in wild common frogs (Rana temporaria) exposed to a viral pathogen (Ranavirus).

    Get PDF
    (c) 2009 Teacher et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Whilst the Major Histocompatibility Complex (MHC) is well characterized in the anuran Xenopus, this region has not previously been studied in another popular model species, the common frog (Rana temporaria). Nor, to date, have there been any studies of MHC in wild amphibian host-pathogen systems. We characterise an MHC class I locus in the common frog, and present primers to amplify both the whole region, and specifically the antigen binding region. As no more than two expressed haplotypes were found in over 400 clones from 66 individuals, it is likely that there is a single class I locus in this species. This finding is consistent with the single class I locus in Xenopus, but contrasts with the multiple loci identified in axolotls, providing evidence that the diversification of MHC class I into multiple loci likely occurred after the Caudata/Anura divergence (approximately 350 million years ago) but before the Ranidae/Pipidae divergence (approximately 230 mya). We use this locus to compare wild populations of common frogs that have been infected with a viral pathogen (Ranavirus) with those that have no history of infection. We demonstrate that certain MHC supertypes are associated with infection status (even after accounting for shared ancestry), and that the diseased populations have more similar supertype frequencies (lower F(ST)) than the uninfected. These patterns were not seen in a suite of putatively neutral microsatellite loci. We interpret this pattern at the MHC locus to indicate that the disease has imposed selection for particular haplotypes, and hence that common frogs may be adapting to the presence of Ranavirus, which currently kills tens of thousands of amphibians in the UK each year

    Localization and Androgen Regulation of Metastasis-Associated Protein 1 in Mouse Epididymis

    Get PDF
    BACKGROUND: Metastasis-associated protein 1 (MTA1), the founding member of the MTA family of genes, can modulate transcription by influencing the status of chromatin remodeling. Despite its strong correlation with the metastatic potential of cancer cells, MTA1 can also regulate crucial cellular pathways by modifying the acetylation status. We have previously reported the presence of MTA1/MTA1 in human and mouse testes, providing the evidence for its involvement in the regulation of testicular function during murine spermatogenesis. The objective of present study was to further assess the localization of MTA1 in mouse epididymis on both transcriptional and translational level, and then to explore whether MTA1 expression is regulated by androgens and postnatal epididymal development. METHODOLOGY/PRINCIPAL FINDINGS: Mice were deprived of circulating androgen by bilaterally castration and were then supplemented with exogenous testosterone propionate for one week. MTA1 was immunolocalized in the epithelium of the entire epididymis with the maximal expression in the nuclei of principal cells and of clear cells in proximal region. Its expression decreased gradually after castration, whereas testosterone treatment could restore the expression, indicating that the expression of this gene is dependent on androgen. During postnatal development, the protein expression in the epididymis began to appear from day 7 to day 14, increased dramatically from postnatal day 28, and peaked at adulthood onwards, coinciding with both the well differentiated status of epididymis and the mature levels of circulating androgens. This region- and cell-specific pattern was also conservative in normal human epididymis. CONCLUSIONS: Our data suggest that the expression of MTA1 protein could be regulated by androgen pathway and its expression level is closely associated with the postnatal development of the epididymis, giving rise to the possibility that this gene plays a potential role in sperm maturation and fertility

    Genome-wide identification of FoxO-dependent gene networks in skeletal muscle during C26 cancer cachexia

    Get PDF
    BACKGROUND: Evidence from cachectic cancer patients and animal models of cancer cachexia supports the involvement of Forkhead box O (FoxO) transcription factors in driving cancer-induced skeletal muscle wasting. However, the genome-wide gene networks and associated biological processes regulated by FoxO during cancer cachexia are unknown. We hypothesize that FoxO is a central upstream regulator of diverse gene networks in skeletal muscle during cancer that may act coordinately to promote the wasting phenotype. METHODS: To inhibit endogenous FoxO DNA-binding, we transduced limb and diaphragm muscles of mice with AAV9 containing the cDNA for a dominant negative (d.n.) FoxO protein (or GFP control). The d.n.FoxO construct consists of only the FoxO3a DNA-binding domain that is highly homologous to that of FoxO1 and FoxO4, and which outcompetes and blocks endogenous FoxO DNA binding. Mice were subsequently inoculated with Colon-26 (C26) cells and muscles harvested 26 days later. RESULTS: Blocking FoxO prevented C26-induced muscle fiber atrophy of both locomotor muscles and the diaphragm and significantly spared force deficits. This sparing of muscle size and function was associated with the differential regulation of 543 transcripts (out of 2,093) which changed in response to C26. Bioinformatics analysis of upregulated gene transcripts that required FoxO revealed enrichment of the proteasome, AP-1 and IL-6 pathways, and included several atrophy-related transcription factors, including Stat3, Fos, and Cebpb. FoxO was also necessary for the cancer-induced downregulation of several gene transcripts that were enriched for extracellular matrix and sarcomere protein-encoding genes. We validated these findings in limb muscles and the diaphragm through qRT-PCR, and further demonstrate that FoxO1 and/or FoxO3a are sufficient to increase Stat3, Fos, Cebpb, and the C/EBPβ target gene, Ubr2. Analysis of the Cebpb proximal promoter revealed two bona fide FoxO binding elements, which we further establish are necessary for Cebpb promoter activation in response to IL-6, a predominant cytokine in the C26 cancer model. CONCLUSIONS: These findings provide new evidence that FoxO-dependent transcription is a central node controlling diverse gene networks in skeletal muscle during cancer cachexia, and identifies novel candidate genes and networks for further investigation as causative factors in cancer-induced wasting.R01 AR060217 - NIAMS NIH HHS; R01 AR060209 - NIAMS NIH HHS; T32 HD043730 - NICHD NIH HHS; R00 HL098453 - NHLBI NIH HHS; R00HL098453 - NHLBI NIH HHS; R01AR060209 - NIAMS NIH HHS; R01AR060217 - NIAMS NIH HH

    The assessment and rehabilitation of prospective memory problems in people with neurological disorders: A review

    Get PDF
    People with neurological disorders often report difficulty with prospective memory (PM), that is, remembering to do things they had intended to do. This paper briefly reviews the literature regarding the neuropsychology of PM function, concluding that from the clinical perspective, PM is best considered in terms of its separable but interacting mnemonic and executive components. Next, the strengths and limitations in the current clinical assessment of PM, including the assessment of component processes, desktop analogues of PM tasks, and naturalistic PM tasks, are outlined. The evidence base for the rehabilitation of PM is then considered, focusing on retraining PM, using retrospective memory strategies, problem-solving training, and finally, electronic memory aids. It is proposed that further research should focus on establishing the predictive validity of PM assessment, and refining promising rehabilitation techniques

    Number preferences in lotteries

    Get PDF
    We explore people's preferences for numbers in large proprietary data sets from two different lottery games. We find that choice is far from uniform, and exhibits some familiar and some new tendencies and biases. Players favor personally meaningful and situationally available numbers, and are attracted towards numbers in the center of the choice form. Frequent players avoid winning numbers from recent draws, whereas infrequent players chase these. Combinations of numbers are formed with an eye for aesthetics, and players tend to spread their numbers relatively evenly across the possible range

    Controlled Release from Cleavable Polymerized Liposomes upon Redox and pH Stimulation

    Get PDF
    A gallate derivative with three propargyl groups was coupled to palmitoyl oleoyl phosphoethanolamine (POPE). The resulting anionic lipid was formulated with common lipids such as palmitoyl oleoyl phosphatidyl choline (POPC) to form large unilamellar vesicles (LUVs). Polymerization of the LUVs was accomplished by the Cu(I)-catalyzed click reaction between the propargyl groups and the azide groups in the cross-linker. When the cross-linker contained a disulfide or ketal group, the resulting polymerized liposomes depolymerized and released entrapped contents upon the addition of a reducing thiol or under weakly acidic conditions. The click reaction allowed simultaneous multivalent surface functionalization during cross-linking, making these cleavable polymerized liposomes (CPLs) potentially very useful in the delivery and controlled release of pharmaceutical agents

    Increased Anxiety-Like Behavior and Enhanced Synaptic Efficacy in the Amygdala of GluR5 Knockout Mice

    Get PDF
    GABAergic transmission in the amygdala modulates the expression of anxiety. Understanding the interplay between GABAergic transmission and excitatory circuits in the amygdala is, therefore, critical for understanding the neurobiological basis of anxiety. Here, we used a multi-disciplinary approach to demonstrate that GluR5-containing kainate receptors regulate local inhibitory circuits, modulate the excitatory transmission from the basolateral amygdala to the central amygdala, and control behavioral anxiety. Genetic deletion of GluR5 or local injection of a GluR5 antagonist into the basolateral amygdala increases anxiety-like behavior. Activation of GluR5 selectively depolarized inhibitory neurons, thereby increasing GABA release and contributing to tonic GABA current in the basolateral amygdala. The enhanced GABAergic transmission leads to reduced excitatory inputs in the central amygdala. Our results suggest that GluR5 is a key regulator of inhibitory circuits in the amygdala and highlight the potential use of GluR5-specific drugs in the treatment of pathological anxiety
    corecore