1,372 research outputs found

    Where Do Pitcher-Leafed Ash Trees Grow?

    Get PDF
    n/

    The Cosmic Origins Spectrograph and the Future of Ultraviolet Astronomy

    Full text link
    I describe the capabilities of the Cosmic Origins Spectrograph, scheduled for May 2009 installation on the Hubble Space Telescope. With a factor-of-ten increase in far-UV throughput for moderate resolution spectroscopy, COS will enable a range of scientific programs that study hot stars, AGN, and gas in the interstellar medium, intergalactic medium, and galactic halos. We also plan a large-scale HST Spectroscopic Legacy Project for QSO absorption lines, galactic halos, and AGN outflows. Studies of next-generation telescopes for UV/O astronomy are now underway, including small, medium, and large missions to fill the imminent ten-year gap between the end of Hubble and a plausible launch of the next large mission. Selecting a strategy for achieving these goals will involve hard choices and tradeoffs in aperture, wavelength, and capability.Comment: To appear in Future Directions in Ultraviolet Astronomy (AIP Conf Proc

    Highly Ionized Envelopes of High Velocity Clouds

    Full text link
    We present recent results on highly ionized gas in Galactic High-Velocity Clouds (HVCs), originally surveyed in OVI (Sembach et al. 2003). In a new FUSE/HST survey of SiII/III/IV (Shull et al. 2009) toward 37 AGN, we detected SiIII (lambda 1206.500 A) absorption with a sky coverage fraction 81 +/- 5% (61 HVCs along 30 of 37 high-latitude sight lines). The SiIII (lambda 1206.500 A) line is typically 4-5 times stronger than OVI (lambda 1031.926 A). The mean HVC column density of perhaps 10^19 cm^-2 of low-metallicity (0.1 - 0.2 Z_sun) ionized gas in the low halo. Recent determinations of HVC distances allow us to estimate a total reservoir of ~10^8 M_sun. Estimates of infall velocities indicate an infall rate of around 1 M_sun yr^-1, comparable to the replenishment rate for star formation in the disk. HVCs appear to be sheathed by intermediate-temperature gas (10^4.0 - 10^4.5 K) detectable in SiIII and SiIV, as well as hotter gas seen in OVI and other high ions. To prepare for HST observations of 10 HVC-selected sight lines with the Cosmic Origins Spectrograph (COS), we compile FUSE/STIS spectra of these ions, plus FeIII, CIII, CIV, and SIV. Better constraints on the physical properties of HVC envelopes and careful treatment of HVC kinematics and infall rates should come from high-quality (S/N ~ 30-40) COS data.Comment: 3 pages, 1 figure, published in Future Directions in Ultraviolet Spectroscopy, Proceedings of the AIP Conference held October 20-22, 2008 in Annapolis, Marylan

    OVI, NV and CIV in the Galactic Halo: II. Velocity-Resolved Observations with Hubble and FUSE

    Full text link
    We present a survey of NV and OVI (and where available CIV) in the Galactic halo, using data from the Far Ultraviolet Spectroscopic Explorer (FUSE) and the Hubble Space Telescope (HST) along 34 sightlines. These ions are usually produced in nonequilibrium processes such as shocks, evaporative interfaces, or rapidly cooling gas, and thus trace the dynamics of the interstellar medium. Searching for global trends in integrated and velocity-resolved column density ratios, we find large variations in most measures, with some evidence for a systematic trend of higher ionization (lower NV/OVI column density ratio) at larger positive line-of-sight velocities. The slopes of log[N(NV)/N(OVI)] per unit velocity range from -0.015 to +0.005, with a mean of -0.0032+/-0.0022(r)+/-0.0014(sys) dex/(km/s). We compare this dataset with models of velocity-resolved high-ion signatures of several common physical structures. The dispersion of the ratios, OVI/NV/CIV, supports the growing belief that no single model can account for hot halo gas, and in fact some models predict much stronger trends than are observed. It is important to understand the signatures of different physical structures to interpret specific lines of sight and future global surveys.Comment: ApJ in press 43 pages, 22 fig

    The Escape of Ionizing Photons from OB Associations in Disk Galaxies: Radiation Transfer Through Superbubbles

    Full text link
    By solving the time-dependent radiation transfer problem of stellar radiation through evolving superbubbles within a smoothly varying HI distribution, we estimate the fraction of ionizing photons emitted by OB associations that escapes the HI disk of our Galaxy into the halo and intergalactic medium (IGM). We consider both coeval star-formation and a Gaussian star-formation history with a time spread sigma_t = 2 Myr. We consider both a uniform H I distribution and a two-phase (cloud/intercloud) model, with a negligible filling factor of hot gas. We find that the shells of the expanding superbubbles quickly trap or attenuate the ionizing flux, so that most of the escaping radiation escapes shortly after the formation of the superbubble. For the coeval star-formation history, the total fraction of Lyman Continuum photons that escape both sides of the disk in the solar vicinity is f_esc approx 0.15 +/- 0.05. For the Gaussian star formation history, f_esc approx 0.06 +/- 0.03, a value roughly a factor of two lower than the results of Dove & Shull (1994), where superbubbles were not considered. For a local production rate of ionizing photons Psi_LyC = 4.95 X 10^7 cm^{-2} s^{-1}, the flux escaping the disk is Phi_LyC approx (1.5-3.0) X 10^6 cm^{-2} s^{-1} for coeval and Gaussian star formation, comparable to the flux required to sustain the Reynolds layer.Comment: Revised version (expanded), accepted for publication by ApJ, 38 pages, 8 figures, aasms4.sty and aabib.sty files include

    The Emergence of the Modern Universe: Tracing the Cosmic Web

    Full text link
    This is the report of the Ultraviolet-Optical Working Group (UVOWG) commissioned by NASA to study the scientific rationale for new missions in ultraviolet/optical space astronomy approximately ten years from now, when the Hubble Space Telescope (HST) is de-orbited. The UVOWG focused on a scientific theme, The Emergence of the Modern Universe, the period from redshifts z = 3 to 0, occupying over 80% of cosmic time and beginning after the first galaxies, quasars, and stars emerged into their present form. We considered high-throughput UV spectroscopy (10-50x throughput of HST/COS) and wide-field optical imaging (at least 10 arcmin square). The exciting science to be addressed in the post-HST era includes studies of dark matter and baryons, the origin and evolution of the elements, and the major construction phase of galaxies and quasars. Key unanswered questions include: Where is the rest of the unseen universe? What is the interplay of the dark and luminous universe? How did the IGM collapse to form the galaxies and clusters? When were galaxies, clusters, and stellar populations assembled into their current form? What is the history of star formation and chemical evolution? Are massive black holes a natural part of most galaxies? A large-aperture UV/O telescope in space (ST-2010) will provide a major facility in the 21st century for solving these scientific problems. The UVOWG recommends that the first mission be a 4m aperture, SIRTF-class mission that focuses on UV spectroscopy and wide-field imaging. In the coming decade, NASA should investigate the feasibility of an 8m telescope, by 2010, with deployable optics similar to NGST. No high-throughput UV/Optical mission will be possible without significant NASA investments in technology, including UV detectors, gratings, mirrors, and imagers.Comment: Report of UV/O Working Group to NASA, 72 pages, 13 figures, Full document with postscript figures available at http://casa.colorado.edu/~uvconf/UVOWG.htm

    Diblock copolymers at a homopolymer-homopolymer-interface: a Monte Carlo simulation

    Get PDF
    The properties of diluted symmetric A-B diblock copolymers at the interface between A and B homopolymer phases are studied by means of Monte Carlo (MC) simulations of the bond fluctuation model. We calculate segment density profiles as well as orientational properties of segments, of A and B blocks, and of the whole chain. Our data support the picture of oriented ``dumbbells'', which consist of mildly perturbed A and B Gaussian coils. The results are compared to a self consistent field theory (SCFT) for single copolymer chains at a homopolymer interface. We also discuss the number of interaction contacts between monomers, which provide a measure for the ``active surface'' of copolymers or homopolymers close to the interface
    corecore