66 research outputs found

    Mutational analysis of the substrate binding pockets of the Rous sarcoma virus and human immunodeficiency virus-1 proteases

    Get PDF
    Mutations, designed by analysis of the crystal structures of Rous sarcoma virus (RSV) and human immunodeficiency virus type 1 (HIV-1) protease (PR), were introduced into the substrate binding pocket of RSV PR. The mutations substituted nonconserved residues of RSV PR, located within 10 Å of the substrate, for those in structurally equivalent positions of HIV-1 PR. Changes in the activity of purified mutants were detected in vitro by following cleavage of synthetic peptides representing wild-type and modified RSV and HIV-1 gag and pol polyprotein cleavage sites. Substituting threonine for valine 104 (V104T), S107N, I44V, Q63M or deletion of residues 61-63 produced enzymes that were 2.5-7-fold more active than the wild type RSV PR. Substituting I42D, M73V, and A100L produced enzymes with lower activity, whereas a mutant that included both M73V and A100L was as active as wild type. Several substitutions altered the specificity for substrate. These include I42D and I44V, which contribute to the S2 and S2' subsites. These proteins exhibited HIV-1 PR specificity for P2- or P2'-modified peptide substrates but unchanged specificity with P4-, P3-, P1-, P1'-, and P3'- modified substrates. Changes in specificity in the S4 subsite were detected by deletion of residues 61-63. These results confirm the hypothesis that the subsites of the substrate binding pocket of the retroviral protease are capable of acting independently in the selection of substrate amino acids

    Expression profiles of hydrophobic surfactant proteins in children with diffuse chronic lung disease

    Get PDF
    BACKGROUND: Abnormalities of the intracellular metabolism of the hydrophobic surfactant proteins SP-B and SP-C and their precursors may be causally linked to chronic childhood diffuse lung diseases. The profile of these proteins in the alveolar space is unknown in such subjects. METHODS: We analyzed bronchoalveolar lavage fluid by Western blotting for SP-B, SP-C and their proforms in children with pulmonary alveolar proteinosis (PAP, n = 15), children with no SP-B (n = 6), children with chronic respiratory distress of unknown cause (cRD, n = 7), in comparison to children without lung disease (n = 15) or chronic obstructive bronchitis (n = 19). RESULTS: Pro-SP-B of 25–26 kD was commonly abundant in all groups of subjects, suggesting that their presence is not of diagnostic value for processing defects. In contrast, pro-SP-B peptides cleaved off during intracellular processing of SP-B and smaller than 19–21 kD, were exclusively found in PAP and cRD. In 4 of 6 children with no SP-B, mutations of SFTPB or SPTPC genes were found. Pro-SP-C forms were identified at very low frequency. Their presence was clearly, but not exclusively associated with mutations of the SFTPB and SPTPC genes, impeding their usage as candidates for diagnostic screening. CONCLUSION: Immuno-analysis of the hydrophobic surfactant proteins and their precursor forms in bronchoalveolar lavage is minimally invasive and can give valuable clues for the involvement of processing abnormalities in pediatric pulmonary disorders

    Cerebropulmonary dysgenetic syndrome

    Get PDF
    Author Posting. © The Author(s), 2008. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Experimental and Molecular Pathology 85 (2008): 112-116, doi:10.1016/j.yexmp.2008.04.006.Ventilatory treatment of neonatal respiratory distress often results in bronchopulmonary dysplasia from congenital surfactant deficiency due to mutants of transporter protein ABCA3. Association of this condition with other severe disorders in premature newborns has not heretofore been reported. A neonatal autopsy included an in vivo whole blood sample for genetic tcsting. Autopsy revealed severe interstitial pulmonary fibrosis at age 8 days with heterozygotic mutation p.E292V of ABCA3 and severe dystrophic retardation of cerebral cortcx and cerebellum. Subsequently, 1300 archival neonatal autopsies, 1983-2006, were reviewed for comparable concurrent findings and bronchopulmonary dysplasia or retarded cerebral dystrophy lacking the other principal feature of this syndrome. Archival review revealed four similar cases and eight less so, without gene analysis. Further review for bronchopulmonary dysplasia revealed 59 cases, 1983-2006. Several other examples of similar retarded migration of germinal matrix and underdevelopment of cortical mantle, without pulmonary lesions of this type, were identified. The determination of an ABCA3 mutation in one case of severe pulmonary fibrosis with significant dystrophy of the brain and the identification of four highly similar archival cases and eight others with partial pathological findings supports the designation of an independent disorder, here referred to as the cerebroprrlmonary dysgenetic syndrome

    Some ABCA3 mutations elevate ER stress and initiate apoptosis of lung epithelial cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>ABCA3 transporter (ATP-binding cassette transporter of the A subfamily) is localized to the limiting membrane of lamellar bodies, organelles for assembly and storage of pulmonary surfactant in alveolar epithelial type II cells (AECII). It transports surfactant phospholipids into lamellar bodies and absence of ABCA3 function disrupts lamellar body biogenesis. Mutations of the <it>ABCA3 </it>gene lead to fatal neonatal surfactant deficiency and chronic interstitial lung disease (ILD) of children. <it>ABCA3 </it>mutations can result in either functional defects of the correctly localized ABCA3 or trafficking/folding defects where mutated ABCA3 remains in the endoplasmic reticulum (ER).</p> <p>Methods</p> <p>Human alveolar epithelial A549 cells were transfected with vectors expressing wild-type ABCA3 or one of the three ABCA3 mutant forms, R43L, R280C and L101P, C-terminally tagged with YFP or hemagglutinin-tag. Localization/trafficking properties were analyzed by immunofluorescence and ABCA3 deglycosylation. Uptake of fluorescent NBD-labeled lipids into lamellar bodies was used as a functional assay. ER stress and apoptotic signaling were examined through RT-PCR based analyses of XBP1 splicing, immunoblotting or FACS analyses of stress/apoptosis proteins, Annexin V surface staining and determination of the intracellular glutathion level.</p> <p>Results</p> <p>We demonstrate that two <it>ABCA3 </it>mutations, which affect ABCA3 protein trafficking/folding and lead to partial (R280C) or complete (L101P) retention of ABCA3 in the ER compartment, can elevate ER stress and susceptibility to it and induce apoptotic markers in the cultured lung epithelial A549 cells. R43L mutation, resulting in a functional defect of the properly localized ABCA3, had no effect on intracellular stress and apoptotic signaling.</p> <p>Conclusion</p> <p>Our data suggest that expression of partially or completely ER localized ABCA3 mutant proteins can increase the apoptotic cell death of the affected cells, which are factors that might contribute to the pathogenesis of genetic ILD.</p

    Altered surfactant homeostasis and recurrent respiratory failure secondary to TTF-1 nuclear targeting defect

    Get PDF
    Background: Mutations of genes affecting surfactant homeostasis, such as SFTPB, SFTPC and ABCA3, lead to diffuse lung disease in neonates and children. Haploinsufficiency of NKX2.1, the gene encoding the thyroid transcription factor-1 (TTF-1) - critical for lung, thyroid and central nervous system morphogenesis and function - causes a rare form of progressive respiratory failure designated brain-lung-thyroid syndrome. Molecular mechanisms involved in this syndrome are heterogeneous and poorly explored. We report a novel TTF-1 molecular defect causing recurrent respiratory failure episodes in an infant.Methods: The subject was an infant with severe neonatal respiratory distress syndrome followed by recurrent respiratory failure episodes, hypopituitarism and neurological abnormalities. Lung histology and ultrastructure were assessed by surgical biopsy. Surfactant-related genes were studied by direct genomic DNA sequencing and array chromatine genomic hybridization (aCGH). Surfactant protein expression in lung tissue was analyzed by confocal immunofluorescence microscopy. For kinetics studies, surfactant protein B and disaturated phosphatidylcholine (DSPC) were isolated from serial tracheal aspirates after intravenous administration of stable isotope-labeled 2H2O and 13C-leucine; fractional synthetic rate was derived from gas chromatography/mass spectrometry 2H and 13C enrichment curves. Six intubated infants with no primary lung disease were used as controls.Results: Lung biopsy showed desquamative interstitial pneumonitis and lamellar body abnormalities suggestive of genetic surfactant deficiency. Genetic studies identified a heterozygous ABCA3 mutation, L941P, previously unreported. No SFTPB, SFTPC or NKX2.1 mutations or deletions were found. However, immunofluorescence studies showed TTF-1 prevalently expressed in type II cell cytoplasm instead of nucleus, indicating defective nuclear targeting. This pattern has not been reported in human and was not found in two healthy controls and in five ABCA3 mutation carriers. Kinetic studies demonstrated a marked reduction of SP-B synthesis (43.2 vs. 76.5 \ub1 24.8%/day); conversely, DSPC synthesis was higher (12.4 vs. 6.3 \ub1 0.5%/day) compared to controls, although there was a marked reduction of DSPC content in tracheal aspirates (29.8 vs. 56.1 \ub1 12.4% of total phospholipid content).Conclusion: Defective TTF-1 signaling may result in profound surfactant homeostasis disruption and neonatal/pediatric diffuse lung disease. Heterozygous ABCA3 missense mutations may act as disease modifiers in other genetic surfactant defects

    Novel Structurally Designed Vaccine for S. aureus α-Hemolysin: Protection against Bacteremia and Pneumonia

    Get PDF
    Staphylococcus aureus (S. aureus) is a human pathogen associated with skin and soft tissue infections (SSTI) and life threatening sepsis and pneumonia. Efforts to develop effective vaccines against S. aureus have been largely unsuccessful, in part due to the variety of virulence factors produced by this organism. S. aureus alpha-hemolysin (Hla) is a pore-forming toxin expressed by most S. aureus strains and reported to play a key role in the pathogenesis of SSTI and pneumonia. Here we report a novel recombinant subunit vaccine candidate for Hla, rationally designed based on the heptameric crystal structure. This vaccine candidate, denoted AT-62aa, was tested in pneumonia and bacteremia infection models using S. aureus strain Newman and the pandemic strain USA300 (LAC). Significant protection from lethal bacteremia/sepsis and pneumonia was observed upon vaccination with AT-62aa along with a Glucopyranosyl Lipid Adjuvant-Stable Emulsion (GLA-SE) that is currently in clinical trials. Passive transfer of rabbit immunoglobulin against AT-62aa (AT62-IgG) protected mice against intraperitoneal and intranasal challenge with USA300 and produced significant reduction in bacterial burden in blood, spleen, kidney, and lungs. Our Hla-based vaccine is the first to be reported to reduce bacterial dissemination and to provide protection in a sepsis model of S. aureus infection. AT62-IgG and sera from vaccinated mice effectively neutralized the toxin in vitro and AT62-IgG inhibited the formation of Hla heptamers, suggesting antibody-mediated neutralization as the primary mechanism of action. This remarkable efficacy makes this Hla-based vaccine a prime candidate for inclusion in future multivalent S. aureus vaccine. Furthermore, identification of protective epitopes within AT-62aa could lead to novel immunotherapy for S. aureus infection

    Therapeutic lung lavages in children and adults

    Get PDF
    BACKGROUND: Pulmonary alveolar proteinosis (PAP) is a rare disease, characterized by excessive intra-alveolar accumulation of surfactant lipids and proteins. Therapeutic whole lung lavages are currently the principle therapeutic option in adults. Not much is known on the kinetics of the wash out process, especially in children. METHODS: In 4 pediatric and 6 adult PAP patients 45 therapeutic half lung lavages were investigated retrospectively. Total protein, protein concentration and, in one child with a surfactant protein C mutation, aberrant pro-SP-C protein, were determined during wash out. RESULTS: The removal of protein from the lungs followed an exponential decline and averaged for adult patients 2 – 20 g and <0.5 to 6 g for pediatric patients. The average protein concentration of consecutive portions was the same in all patient groups, however was elevated in pediatric patients when expressed per body weight. The amount of an aberrant pro-SP-C protein, which was present in one patient with a SP-C mutation, constantly decreased with ongoing lavage. Measuring the optical density of the lavage fluid obtained allowed to monitor the wash out process during the lavages at the bedside and to determine the termination of the lavage procedure at normal protein concentration. CONCLUSION: Following therapeutic half lung lavages by biochemical variables may help to estimate the degree of alveolar filling with proteinaceous material and to improve the efficiency of the wash out, especially in children

    The surfactant protein C mutation A116D alters cellular processing, stress tolerance, surfactant lipid composition, and immune cell activation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Surfactant protein C (SP-C) is important for the function of pulmonary surfactant. Heterozygous mutations in <it>SFTPC</it>, the gene encoding SP-C, cause sporadic and familial interstitial lung disease (ILD) in children and adults. Mutations mapping to the BRICHOS domain located within the SP-C proprotein result in perinuclear aggregation of the proprotein. In this study, we investigated the effects of the mutation A116D in the BRICHOS domain of SP-C on cellular homeostasis. We also evaluated the ability of drugs currently used in ILD therapy to counteract these effects.</p> <p>Methods</p> <p>SP-C<sup>A116D </sup>was expressed in MLE-12 alveolar epithelial cells. We assessed in vitro the consequences for cellular homeostasis, immune response and effects of azathioprine, hydroxychloroquine, methylprednisolone and cyclophosphamide.</p> <p>Results</p> <p>Stable expression of SP-C<sup>A116D </sup>in MLE-12 alveolar epithelial cells resulted in increased intracellular accumulation of proSP-C processing intermediates. SP-C<sup>A116D </sup>expression further led to reduced cell viability and increased levels of the chaperones Hsp90, Hsp70, calreticulin and calnexin. Lipid analysis revealed decreased intracellular levels of phosphatidylcholine (PC) and increased lyso-PC levels. Treatment with methylprednisolone or hydroxychloroquine partially restored these lipid alterations. Furthermore, SP-C<sup>A116D </sup>cells secreted soluble factors into the medium that modulated surface expression of CCR2 or CXCR1 receptors on CD4<sup>+ </sup>lymphocytes and neutrophils, suggesting a direct paracrine effect of SP-C<sup>A116D </sup>on neighboring cells in the alveolar space.</p> <p>Conclusions</p> <p>We show that the A116D mutation leads to impaired processing of proSP-C in alveolar epithelial cells, alters cell viability and lipid composition, and also activates cells of the immune system. In addition, we show that some of the effects of the mutation on cellular homeostasis can be antagonized by application of pharmaceuticals commonly applied in ILD therapy. Our findings shed new light on the pathomechanisms underlying SP-C deficiency associated ILD and provide insight into the mechanisms by which drugs currently used in ILD therapy act.</p

    Interstitial lung disease in children - genetic background and associated phenotypes

    Get PDF
    Interstitial lung disease in children represents a group of rare chronic respiratory disorders. There is growing evidence that mutations in the surfactant protein C gene play a role in the pathogenesis of certain forms of pediatric interstitial lung disease. Recently, mutations in the ABCA3 transporter were found as an underlying cause of fatal respiratory failure in neonates without surfactant protein B deficiency. Especially in familiar cases or in children of consanguineous parents, genetic diagnosis provides an useful tool to identify the underlying etiology of interstitial lung disease. The aim of this review is to summarize and to describe in detail the clinical features of hereditary interstitial lung disease in children. The knowledge of gene variants and associated phenotypes is crucial to identify relevant patients in clinical practice
    corecore