85 research outputs found

    Immune associated LncRNAs identify novel prognostic subtypes of renal clear cell carcinoma

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/148402/1/mc22949_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/148402/2/mc22949.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/148402/3/mc22949-sup-0001-SuppData-S1.pd

    Low temperature (Zn,Sn)O deposition for reducing interface open-circuit voltage deficit to achieve highly efficient Se-free Cu(In,Ga)S2 solar cells

    Get PDF
    Cu(In,Ga)S-2 holds the potential to become a prime candidate for use as the top cell in tandem solar cells owing to its tunable bandgap from 1.55 eV (CuInS2) to 2.50 eV (CuGaS2) and favorable electronic properties. Devices above 14% power conversion efficiency (PCE) can be achieved by replacing the CdS buffer layer with a (Zn,Mg)O or Zn(O,S) buffer layer. However, the maximum achievable PCE of these devices is limited by the necessary high heating temperatures during or after buffer deposition, as this leads to a drop in the quasi-Fermi level splitting (qFLs) and therefore the maximum achievable open-circuit voltage (V-OC). In this work, a low-temperature atomic layer deposited (Zn,Sn)O thin film is explored as a buffer layer to mitigate the drop in the qFLs. The devices made with (Zn,Sn)O buffer layers are characterized by calibrated photoluminescence and current-voltage measurements to analyze the optoelectronic and electrical characteristics. An improvement in the qFLs after buffer deposition is observed for devices prepared with the (Zn,Sn)O buffer deposited at 120 degrees C. Consequently, a device with a V-OC value above 1 V was achieved. A 14% PCE is externally measured and certified for the best solar cell. The results show the necessity of developing a low-temperature buffer deposition process to maintain and translate absorber qFLs to device V-OC

    Origin of Interface Limitation in Zn(O,S)/CuInS2‑Based Solar Cells

    Get PDF
    Copper indium disulfide CuInS2 grown under Cu rich conditions exhibits high optical quality but suffers predominantly from charge carrier interface recombination, resulting in poor solar cell performance. An unfavorable cliff like conduction band alignment at the buffer CuInS2 interface could be a possible cause of enhanced interface recombination in the device. In this work, we exploit direct and inverse photoelectron spectroscopy together with electrical characterization to investigate the cause of interface recombination in chemical bath deposited Zn O,S co evaporated CuInS2 based devices. Temperature dependent current voltage analyses indeed reveal an activation energy of the dominant charge carrier recombination path, considerably smaller than the absorber bulk band gap, confirming the dominant recombination channel to be present at the Zn O,S CuInS2 interface. However, photoelectron spectroscopy measurements indicate a small 0.1 eV spike like conduction band offset at the Zn O,S CuInS2 interface, excluding an unfavorable energy level alignment to be the prominent cause for strong interface recombination. The observed band bending upon interface formation also suggests Fermi level pinning not to be the main reason, leaving near interface defects as recently observed in Cu rich CuInSe2 as the likely reason for the performance limiting interface recombinatio

    Unravelling the Long Non-Coding RNA Profile of Undifferentiated Large Cell Lung Carcinoma

    No full text
    Undifferentiated large cell lung carcinoma (LCLC) accounts for 2.9–9% of total lung cancers. Recently, RNA-seq based studies have revealed major genomic aberrations in LCLC. In this study, we aim to identify long non-coding RNAs (LncRNAs) expression pattern specific to LCLC. The RNA-seq profile of LCLC and other non-small cell lung carcinoma (NSCLC) was downloaded from Gene Expression Omnibus (GEO) and analyzed. Using 10 LCLC samples, we found that 18% of all the annotated LncRNAs are expressed in LCLC samples. Among 1794 expressed LncRNAs, 11 were overexpressed and 14 were downregulated in LCLC compared to normal samples. Based on receiver operating characteristic (ROC) analysis, we showed that the top five differentially expressed LncRNAs were able to differentiate between LCLC and normal samples with high sensitivity and specificity. Guilt by association analysis using genes correlating with differentially expressed LncRNAs identified several cancer-associated pathways, suggesting the role of these deregulated LncRNA in LCLC biology. We also identified the LncRNA differentially expressed in LCLC compared to lung squamous carcinoma (LUSC) and Lung-adenocarcinoma (LUAD). We found that LCLC sample showed more deregulated LncRNA in LUSC than LUAD. Interestingly, LCLC had more downregulated LncRNA compared to LUAD and LUSC. Our study provides novel insight into LncRNA deregulation in LCLC. This study also finds tools to diagnose LCLC and differentiate LCLC with other Non-Small Cell Lung Cancer

    Electrical charge transport and optical properties of iron pyrite

    No full text
    Iron pyrite is among the promising solar materials owing to its remarkably high optical absorption, optimal band gap, abundance, and non-toxicity. However, its solar conversion efficiency is limited to about 3 % mainly due to its low photovoltage. To address that, thin films prepared by spray pyrolysis, spin-coating of hot-injection synthesized nanocubes and pulsed laser deposition were sulfurized to obtain the pure pyrite phase. The film showed similar electrical properties and degenerate semiconducting behavior with Mott-VRH charge transport over a wide temperature range. Charge carrier dynamics in nanocube thin film revealed fast carrier localization and long-lived trap states in the pure pyrite. Temperature dependent electrical and magnetic behaviors supported the existence of intrinsic localized gap states. A non-standard, electrical experiment was carried out on a natural pyrite single crystal to assess the surface and bulk resistivities of pyrite which showed a significant difference in them for temperatures less than 120 K. It is concluded that the poor photovoltage generated by pyrite solar devices is due to the intrinsic defects in the material rather than to impurities or secondary phases.Doctor of Philosophy (IGS

    Unravelling the Long Non-Coding RNA Profile of Undifferentiated Large Cell Lung Carcinoma

    No full text
    Undifferentiated large cell lung carcinoma (LCLC) accounts for 2.9–9% of total lung cancers. Recently, RNA-seq based studies have revealed major genomic aberrations in LCLC. In this study, we aim to identify long non-coding RNAs (LncRNAs) expression pattern specific to LCLC. The RNA-seq profile of LCLC and other non-small cell lung carcinoma (NSCLC) was downloaded from Gene Expression Omnibus (GEO) and analyzed. Using 10 LCLC samples, we found that 18% of all the annotated LncRNAs are expressed in LCLC samples. Among 1794 expressed LncRNAs, 11 were overexpressed and 14 were downregulated in LCLC compared to normal samples. Based on receiver operating characteristic (ROC) analysis, we showed that the top five differentially expressed LncRNAs were able to differentiate between LCLC and normal samples with high sensitivity and specificity. Guilt by association analysis using genes correlating with differentially expressed LncRNAs identified several cancer-associated pathways, suggesting the role of these deregulated LncRNA in LCLC biology. We also identified the LncRNA differentially expressed in LCLC compared to lung squamous carcinoma (LUSC) and Lung-adenocarcinoma (LUAD). We found that LCLC sample showed more deregulated LncRNA in LUSC than LUAD. Interestingly, LCLC had more downregulated LncRNA compared to LUAD and LUSC. Our study provides novel insight into LncRNA deregulation in LCLC. This study also finds tools to diagnose LCLC and differentiate LCLC with other Non-Small Cell Lung Cancer

    Utilisation of Sisal Fibre in Stone Matrix Asphalt

    No full text
    The purpose of this study is to study various engineering properties of SMA mixes by use of sisal fibre. In SMA sisal fibre has not been used before this attempt is made. Here SMA mixes are prepared using sisal fibre with varying binder content and their properties and behavior is found out. In preparations of all samples cement is used as filler and 60/70 bitumen is used as binder. Test method used is Marshall Test. By analyzing tests it is learnt here that sisal fibre may also be used in preparation of SMA mixes. For mild values of traffic sisal fibre would result in a good replacement of conservative fibres because of its low flow value with binder content. Also with consideration of VMA, VFA, VA, and optimum binder content sisal fibre comes to be a good fibre to be used in SMA
    corecore