26 research outputs found
Using of Genome Editing Methods in Plant Breeding
The main task of plant breeding is creating of high-yield, resistant to biotic and abiotic stresses crop varieties with high product quality. The using of traditional breeding methods is limited by the duration of the new crop varieties creation with the required agronomic traits. This depends not only on the duration of growing season and reaching of mature stage of plants (especially the long-period growth plants, e.g. trees), as well as is associated with applying of multiple stages of crossing, selection and testing in breeding process. In addition, conventional methods of chemical and physical mutagenesis do not allow targeting effect to genome. However, the introduction of modern DNA-technology methods, such as genome editing, has opened in a new era in plant breeding. These methods allow to carry out precise and efficient targeted genome modifications, significantly reducing the time required to get plants with desirable features to create new crop varieties in perspective. This review provides the knowledge about application of genome editing methods to increase crop yields and product quality, as well as crop resistance to biotic and abiotic stresses. In addition, future prospects for integrating these technologies into crop breeding strategies are also discussed
Cotton as a Model for Polyploidy and Fiber Development Study
Cotton is one of the most important crops in the world. The Gossypium genus is represented by 50 species, divided into two levels of ploidy: diploid (2n = 26) and tetraploid (2n = 52). This diversity of Gossypium species provides an ideal model for studying the evolution and domestication of polyploids. In this regard, studies of the origin and evolution of polyploid cotton species are crucial for understanding the ways and mechanisms of gene and genome evolution. In addition, studies of polyploidization of the cotton genome will allow to more accurately determine the localization of QTLs that determine fiber quality. In addition, due to the fact that cotton fibers are single trichomes originating from epidermal cells, they are one of the most favorable model systems for studying the molecular mechanisms of regulation of cell and cell wall elongation, as well as cellulose biosynthesis
Genome Editing in Plants: An Overview of Tools and Applications
The emergence of genome manipulation methods promises a real revolution in biotechnology and genetic engineering. Targeted editing of the genomes of living organisms not only permits investigations into the understanding of the fundamental basis of biological systems but also allows addressing a wide range of goals towards improving productivity and quality of crops. This includes the creation of plants with valuable compositional properties and with traits that confer resistance to various biotic and abiotic stresses. During the past few years, several novel genome editing systems have been developed; these include zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats/Cas9 (CRISPR/Cas9). These exciting new methods, briefly reviewed herein, have proved themselves as effective and reliable tools for the genetic improvement of plants
Recent Developments in Fiber Genomics of Tetraploid Cotton Species
Cotton (Gossypium spp.) produces naturally soft, single-celled trichomes as fiber on the seed coat supplying the main source of natural raw material for the textile industry. It is economically considered as one of the most leading cash crops in the world and evolutionarily very important as a model system for detailed scientific investigations. Cotton production is going through a big transition stage such as losing the market share in competition with the synthetic fibers, high popularity of Bt and herbicide resistance genes in cotton cultivars, and the recent shift of fiber demands to meet the standard fiber quality due to change of textile technologies to produce high superior quality of fibers in the global market. Recently, next-generation sequencing technologies through high-throughput sequencing at greatly reduced costs provided opportunities to sequence the diploid and tetraploid cotton genomes. With the availability of large volume of literatures on molecular mapping, new genomic resources, characterization of cotton genomes, discoveries of many novel genes, regulatory elements including small and microRNAs and new genetic tools such as gene silencing or gene editing technique for genome manipulation, this report attempted to provide the readers a comprehensive review on the recent advances of cotton fiber genomics research
Most accurate mutations in SARS-CoV-2 genomes identified in Uzbek patients show novel amino acid changes
PurposeThe rapid changes in the coronavirus genomes created new strains after the first variation was found in Wuhan in 2019. SARS-CoV-2 genotypes should periodically undergo whole genome sequencing to control it because it has been extremely helpful in combating the virus. Many diagnoses, treatments, and vaccinations have been developed against it based on genome sequencing. With its practical implications, this study aimed to determine changes in the delta variant of SARS-CoV-2 widespread in Uzbekistan during the pandemic by genome sequencing, thereby providing crucial insights for developing effective control strategies that can be directly applied in the field.DesignWe meticulously generated 17 high-quality whole-genome sequence data from 48 SARS-CoV-2 genotypes of COVID-19 patients who tested positive by PCR in Tashkent, Uzbekistan. Our rigorous approach, which includes stringent quality control measures and multiple rounds of verification, ensures the accuracy and reliability of our findings.MethodsOur study employed a unique combination of genome sequencing and bioinformatics web tools to analyze amino acid (AA) changes in the virus genomes. This approach allowed us to understand the genetic changes in the delta variant of SARS-CoV-2 widespread in Uzbekistan during the pandemic.ResultsOur study revealed significant nucleotide polymorphisms, including non-synonymous (missense) and synonymous mutations in the coding regions of the sequenced sample genomes. These findings, categorized by phylogenetic analysis into the G clade (or GK sub-clade), contribute to our understanding of the delta variant of SARS-CoV-2 widespread in Uzbekistan during the pandemic. A total of 134 mutations were identified, consisting of 65 shared and 69 unique mutations. These nucleotide changes, including one frameshift mutation, one conservative and disruptive insertion-deletion, four upstream region mutations, four downstream region mutations, 39 synonymous mutations, and 84 missense mutations, are crucial in the ongoing battle against the virus.ConclusionThe comprehensive whole-genome sequencing data presented in this study aids in tracing the origins and sources of circulating SARS-CoV-2 variants and analyzing emerging variations within Uzbekistan and globally. The genome sequencing of SARS-CoV-2 from samples collected in Uzbekistan in late 2021, during the peak of the pandemic’s second wave nationwide, is detailed here. Following acquiring these sequences, research efforts have focused on developing DNA and plant-based edible vaccines utilizing prevalent SARS-CoV-2 strains in Uzbekistan, which are currently undergoing clinical trials
RNA Interference for Functional Genomics and Improvement of Cotton (Gossypium sp.)
RNA interference (RNAi), is a powerful new technology in the discovery of genetic sequence functions, and has become a valuable tool for functional genomics of cotton (Gossypium ssp.). The rapid adoption of RNAi has replaced previous antisense technology. RNAi has aided in the discovery of function and biological roles of many key cotton genes involved in fiber development, fertility and somatic embryogenesis, resistance to important biotic and abiotic stresses, and oil and seed quality improvements as well as the key agronomic traits including yield and maturity. Here, we have comparatively reviewed seminal research efforts in previously used antisense approaches and currently applied breakthrough RNAi studies in cotton, analyzing developed RNAi methodologies, achievements, limitations, and future needs in functional characterizations of cotton genes. We also highlighted needed efforts in the development of RNAi-based cotton cultivars, and their safety and risk assessment, small and large-scale field trials, and commercialisation
Genetic linkage map of the F<sub>3</sub> population showing the location of QTL for photoperiodic flowering.
<p>Genetic linkage map of the F<sub>3</sub> population showing the location of QTL for photoperiodic flowering.</p