110 research outputs found

    ODB: a database of operons accumulating known operons across multiple genomes

    Get PDF
    Operon structures play an important role in co-regulation in prokaryotes. Although over 200 complete genome sequences are now available, databases providing genome-wide operon information have been limited to certain specific genomes. Thus, we have developed an ODB (Operon DataBase), which provides a data retrieval system of known operons among the many complete genomes. Additionally, putative operons that are conserved in terms of known operons are also provided. The current version of our database contains about 2000 known operon information in more than 50 genomes and about 13 000 putative operons in more than 200 genomes. This system integrates four types of associations: genome context, gene co-expression obtained from microarray data, functional links in biological pathways and the conservation of gene order across the genomes. These associations are indicators of the genes that organize an operon, and the combination of these indicators allows us to predict more reliable operons. Furthermore, our system validates these predictions using known operon information obtained from the literature. This database integrates known literature-based information and genomic data. In addition, it provides an operon prediction tool, which make the system useful for both bioinformatics researchers and experimental biologists. Our database is accessible at

    Characterization of relationships between transcriptional units and operon structures in Bacillus subtilis and Escherichia coli

    Get PDF
    BACKGROUND: Operon structures play an important role in transcriptional regulation in prokaryotes. However, there have been fewer studies on complicated operon structures in which the transcriptional units vary with changing environmental conditions. Information about such complicated operons is helpful for predicting and analyzing operon structures, as well as understanding gene functions and transcriptional regulation. RESULTS: We systematically analyzed the experimentally verified transcriptional units (TUs) in Bacillus subtilis and Escherichia coli obtained from ODB and RegulonDB. To understand the relationships between TUs and operons, we defined a new classification system for adjacent gene pairs, divided into three groups according to the level of gene co-regulation: operon pairs (OP) belong to the same TU, sub-operon pairs (SOP) that are at the transcriptional boundaries within an operon, and non-operon pairs (NOP) belonging to different operons. Consequently, we found that the levels of gene co-regulation was correlated to intergenic distances and gene expression levels. Additional analysis revealed that they were also correlated to the levels of conservation across about 200 prokaryotic genomes. Most interestingly, we found that functional associations in SOPs were more observed in the environmental and genetic information processes. CONCLUSION: Complicated operon strucutures were correlated with genome organization and gene expression profiles. Such intricately regulated operons allow functional differences depending on environmental conditions. These regulatory mechanisms are helpful in accommodating the variety of changes that happen around the cell. In addition, such differences may play an important role in the evolution of gene order across genomes

    iPath2.0: interactive pathway explorer

    Get PDF
    iPath2.0 is a web-based tool (http://pathways.embl.de) for the visualization and analysis of cellular pathways. Its primary map summarizes the metabolism in biological systems as annotated to date. Nodes in the map correspond to various chemical compounds and edges represent series of enzymatic reactions. In two other maps, iPath2.0 provides an overview of secondary metabolite biosynthesis and a hand-picked selection of important regulatory pathways and other functional modules, allowing a more general overview of protein functions in a genome or metagenome. iPath2.0′s main interface is an interactive Flash-based viewer, which allows users to easily navigate and explore the complex pathway maps. In addition to the default pre-computed overview maps, iPath offers several data mapping tools. Users can upload various types of data and completely customize all nodes and edges of iPath2.0′s maps. These customized maps give users an intuitive overview of their own data, guiding the analysis of various genomics and metagenomics projects

    p62/SQSTM1-droplet serves as a platform for autophagosome formation and anti-oxidative stress response

    Get PDF
    Autophagy contributes to the selective degradation of liquid droplets, including the P-Granule, Ape1-complex and p62/SQSTM1-body, although the molecular mechanisms and physiological relevance of selective degradation remain unclear. In this report, we describe the properties of endogenous p62-bodies, the effect of autophagosome biogenesis on these bodies, and the in vivo significance of their turnover. p62-bodies are low-liquidity gels containing ubiquitin and core autophagy-related proteins. Multiple autophagosomes form on the p62-gels, and the interaction of autophagosome-localizing Atg8-proteins with p62 directs autophagosome formation toward the p62-gel. Keap1 also reversibly translocates to the p62-gels in a p62-binding dependent fashion to activate the transcription factor Nrf2. Mice deficient for Atg8-interaction-dependent selective autophagy show that impaired turnover of p62-gels leads to Nrf2 hyperactivation in vivo. These results indicate that p62-gels are not simple substrates for autophagy but serve as platforms for both autophagosome formation and anti-oxidative stress. Liquid-liquid phase separation of p62/SQSTM1 has been previously described, although the significance in vivo remains unclear. Here the authors show p62 droplets contain ubiquitin, autophagy-related proteins and Keap1 to serve as platform of not only autophagosome formation but also Nrf2 activation.Peer reviewe

    Brown adipose tissue dysfunction promotes heart failure via a trimethylamine N-oxide-dependent mechanism.

    Get PDF
    Low body temperature predicts a poor outcome in patients with heart failure, but the underlying pathological mechanisms and implications are largely unknown. Brown adipose tissue (BAT) was initially characterised as a thermogenic organ, and recent studies have suggested it plays a crucial role in maintaining systemic metabolic health. While these reports suggest a potential link between BAT and heart failure, the potential role of BAT dysfunction in heart failure has not been investigated. Here, we demonstrate that alteration of BAT function contributes to development of heart failure through disorientation in choline metabolism. Thoracic aortic constriction (TAC) or myocardial infarction (MI) reduced the thermogenic capacity of BAT in mice, leading to significant reduction of body temperature with cold exposure. BAT became hypoxic with TAC or MI, and hypoxic stress induced apoptosis of brown adipocytes. Enhancement of BAT function improved thermogenesis and cardiac function in TAC mice. Conversely, systolic function was impaired in a mouse model of genetic BAT dysfunction, in association with a low survival rate after TAC. Metabolomic analysis showed that reduced BAT thermogenesis was associated with elevation of plasma trimethylamine N-oxide (TMAO) levels. Administration of TMAO to mice led to significant reduction of phosphocreatine and ATP levels in cardiac tissue via suppression of mitochondrial complex IV activity. Genetic or pharmacological inhibition of flavin-containing monooxygenase reduced the plasma TMAO level in mice, and improved cardiac dysfunction in animals with left ventricular pressure overload. In patients with dilated cardiomyopathy, body temperature was low along with elevation of plasma choline and TMAO levels. These results suggest that maintenance of BAT homeostasis and reducing TMAO production could be potential next-generation therapies for heart failure.We thank Kaori Yoshida, Keiko Uchiyama, Satomi Kawai, Naomi Hatanaka, Yoko Sawaguchi, Runa Washio, Takako Ichihashi, Nanako Koike, Keiko Uchiyama, Masaaki Nameta (Niigata University), Kaori Igarashi, Kaori Saitoh, Keiko Endo, Hiroko Maki, Ayano Ueno, Maki Ohishi, Sanae Yamanaka, Noriko Kagata (Keio University) for their excellent technical assistance, C. Ronald Kahn (Joslin Diabetes Center and Harvard Medical School) for providing the BAT cell line, Evan Rosen (Harvard Medical School) for providing us Ucp-Cre mice, Kosuke Morikawa (Kyoto University), Tomitake Tsukihara (University of Hyogo) and Shinya Yoshikawa (University of Hyogo) for their professional opinions and suggestions. Tis work was supported by a Grant-in-Aid for Scientifc Research (A) (20H00533) from MEXT, AMED under Grant Numbers JP20ek0210114, and AMED-CREST under Grant Number JP20gm1110012, and Moonshot Research and Development Program (21zf0127003s0201), MEXT Supported Program for the Strategic Research Foundation at Private Universities Japan, Private University Research Branding Project, and Leading Initiative for Excellent Young Researchers, and grants from the Takeda Medical Research Foundation, the Vehicle Racing Commemorative Foundation, Ono Medical Research Foundation, and the Suzuken Memorial Foundation (to T.M.). Support was also provided by a Grants-in-Aid for Young Scientists (Start-up) (26893080), and grants from the Uehara Memorial Foundation, Kowa Life Science Foundation, Manpei Suzuki Diabetes Foundation, SENSHIN Medical Research Foundation, ONO Medical Research Foundation, Tsukada Grant for Niigata University Medical Research, Te Nakajima Foundation, SUZUKEN memorial foundation, HOKUTO Corporation, Mochida Memorial Foundation for Medical & Pharmaceutical Research, Grants-in-Aid for Encouragement of Young Scientists (A) (16H06244), Daiichi Sankyo Foundation of Life Science, AMED Project for Elucidating and Controlling Mechanisms of Aging and Longevity under Grant Number JP17gm5010002, JP18gm5010002, JP19gm5010002, JP20gm5010002, JP21gm5010002, Astellas Foundation for Research on Metabolic Disorders, Research grant from Naito Foundation, Te Japan Geriatrics Society (to I.S.); by a Grant-in-Aid for Scientifc Research (C) (19K08974), Yujin Memorial Grant, Sakakibara Memorial Research Grant from Te Japan Research Promotion Society for Cardiovascular Diseases, TERUMO Life Science Foundation, Kanae Foundation (to Y.Y.), JST ERATO (JPMJER1902), AMED-CREST (JP20gm1010009), the Takeda Science Foundation, the Food Science Institute Foundation (to S.F.), and by a grant from Bourbon (to T.M., I.S. and Y.Y.).S
    corecore