90 research outputs found
WavMark: Watermarking for Audio Generation
Recent breakthroughs in zero-shot voice synthesis have enabled imitating a
speaker's voice using just a few seconds of recording while maintaining a high
level of realism. Alongside its potential benefits, this powerful technology
introduces notable risks, including voice fraud and speaker impersonation.
Unlike the conventional approach of solely relying on passive methods for
detecting synthetic data, watermarking presents a proactive and robust defence
mechanism against these looming risks. This paper introduces an innovative
audio watermarking framework that encodes up to 32 bits of watermark within a
mere 1-second audio snippet. The watermark is imperceptible to human senses and
exhibits strong resilience against various attacks. It can serve as an
effective identifier for synthesized voices and holds potential for broader
applications in audio copyright protection. Moreover, this framework boasts
high flexibility, allowing for the combination of multiple watermark segments
to achieve heightened robustness and expanded capacity. Utilizing 10 to
20-second audio as the host, our approach demonstrates an average Bit Error
Rate (BER) of 0.48\% across ten common attacks, a remarkable reduction of over
2800\% in BER compared to the state-of-the-art watermarking tool. See
https://aka.ms/wavmark for demos of our work
Case Report: Minimally invasive repair of a traumatic abdominal wall hernia in a child with a fascial closure device
Abdominal trauma is common in daily life, but a traumatic abdominal wall hernia (TAWH) in children is rare. A TAWH is caused by a huge external force that leads to subcutaneous muscle and fascia rupture, while the skin remains intact. As abdominal pressure increases, the abdominal contents protrude, forming a lump. A TAWH is highly susceptible to missed diagnosis because of other severe injuries. We report a case of a 2-year-old boy with a TAWH who developed a prominent subcutaneous mass on the right side of his abdomen after abdominal trauma; the size of the mass changed significantly with abdominal pressure and crying. In this case, we used a new approach of laparoscopic suture repair technique with the assistance of a fascial closure device and achieved good results. We found that this method offers the advantages of minimally invasive surgery, fast recovery, and no visible surgical incisions. There was no recurrence after 8 months of follow-up
Visualizing Exotic Orbital Texture in the Single-Layer Mott Insulator 1T-TaSe2
Mott insulating behavior is induced by strong electron correlation and can
lead to exotic states of matter such as unconventional superconductivity and
quantum spin liquids. Recent advances in van der Waals material synthesis
enable the exploration of novel Mott systems in the two-dimensional limit. Here
we report characterization of the local electronic properties of single- and
few-layer 1T-TaSe2 via spatial- and momentum-resolved spectroscopy involving
scanning tunneling microscopy and angle-resolved photoemission. Our combined
experimental and theoretical study indicates that electron correlation induces
a robust Mott insulator state in single-layer 1T-TaSe2 that is accompanied by
novel orbital texture. Inclusion of interlayer coupling weakens the insulating
phase in 1T-TaSe2, as seen by strong reduction of its energy gap and quenching
of its correlation-driven orbital texture in bilayer and trilayer 1T-TaSe2. Our
results establish single-layer 1T-TaSe2 as a useful new platform for
investigating strong correlation physics in two dimensions
Cytoplasmic p21 is a potential predictor for cisplatin sensitivity in ovarian cancer
<p>Abstract</p> <p>Background</p> <p>P21<sup>(WAF1/Cip1) </sup>binds to cyclin-dependent kinase complexes and inhibits their activities. It was originally described as an inhibitor of cancer cell proliferation. However, many recent studies have shown that p21 promotes tumor progression when accumulated in the cell cytoplasm. So far, little is known about the correlation between cytoplasmic p21 and drug resistance. This study was aimed to investigate the role of p21 in the cisplatin resistance of ovarian cancer.</p> <p>Methods</p> <p>RT-PCR, western blot and immunofluorescence were used to detect p21 expression and location in cisplatin-resistant ovarian cancer cell line C13* and its parental line OV2008. Regulation of cytoplasmic p21 was performed through transfection of p21 siRNA, Akt2 shRNA and Akt2 constitutively active vector in the two cell lines; their effects on cisplatin-induced apoptosis were evaluated by flow cytometry. Tumor tissue sections of clinical samples were analyzed by immunohistochemistry.</p> <p>Results</p> <p>p21 predominantly localizes to the cytoplasm in C13* compared to OV2008. Persistent exposure to low dose cisplatin in OV2008 leads to p21 translocation from nuclear to cytoplasm, while it had not impact on p21 localization in C13*. Knockdown of cytoplasmic p21 by p21 siRNA transfection in C13* notably increased cisplatin-induced apoptosis through activation of caspase 3. Inhibition of p21 translocation into the cytoplasm by transfection of Akt2 shRNA into C13* cells significantly increased cisplatin-induced apoptosis, while induction of p21 translocation into the cytoplasm by transfection of constitutively active Akt2 in OV2008 enhanced the resistance to cisplatin. Immunohistochemical analysis of clinical ovarian tumor tissues demonstrated that cytoplasmic p21 was negatively correlated with the response to cisplatin based treatment.</p> <p>Conclusions</p> <p>Cytoplasmic p21 is a novel biomarker of cisplatin resistance and it may represent a potential therapeutic target for ovarian tumors that are refractory to conventional treatment.</p
High drug-loaded microspheres enabled by controlled in-droplet precipitation promote functional recovery after spinal cord injury
High drug loading improves therapeutic efficacy and reduces side effects in drug delivery. Here, the authors use controlled diffusion of solvents to precipitate drug nanoparticles in polymer particles while the polymer is solidifying and demonstrate the particles for drug delivery in a spinal cord injury model. Drug delivery systems with high content of drug can minimize excipients administration, reduce side effects, improve therapeutic efficacy and/or promote patient compliance. However, engineering such systems is extremely challenging, as their loading capacity is inherently limited by the compatibility between drug molecules and carrier materials. To mitigate the drug-carrier compatibility limitation towards therapeutics encapsulation, we developed a sequential solidification strategy. In this strategy, the precisely controlled diffusion of solvents from droplets ensures the fast in-droplet precipitation of drug molecules prior to the solidification of polymer materials. After polymer solidification, a mass of drug nanoparticles is embedded in the polymer matrix, forming a nano-in-micro structured microsphere. All the obtained microspheres exhibit long-term storage stability, controlled release of drug molecules, and most importantly, high mass fraction of therapeutics (21.8-63.1 wt%). Benefiting from their high drug loading degree, the nano-in-micro structured acetalated dextran microspheres deliver a high dose of methylprednisolone (400 mu g) within the limited administration volume (10 mu L) by one single intrathecal injection. The amount of acetalated dextran used was 1/433 of that of low drug-loaded microspheres. Moreover, the controlled release of methylprednisolone from high drug-loaded microspheres contributes to improved therapeutic efficacy and reduced side effects than low drug-loaded microspheres and free drug in spinal cord injury therapy.Peer reviewe
The First Polarimetric View on Quasi-Periodic Oscillations in a Black Hole X-ray Binary
We present the first polarimetric analysis of Quasi-Periodic Oscillations
(QPO) in a black hole binary utilizing \textit{IXPE} data. Our study focuses on
Swift J1727.8--1613, which experienced a massive outburst that was observed by
various telescopes across different wavelengths. The \textit{IXPE} observation
we studied was conducted during the Hard-Intermediate state. The polarization
degree (PD) and polarization angle (PA) were measured at 4.280.20\% and
, respectively. Remarkably, significant QPO signals
were detected during this observation, with a QPO frequency of approximately
1.34 Hz and a fractional root-mean-square (RMS) amplitude of about 12.3\%.
Furthermore, we conducted a phase-resolved analysis of the QPO using the
Hilbert-Huang transform technique. The photon index showed a strong modulation
with respect to the QPO phase. In contrast, the PD and PA exhibit no
modulations in relation to the QPO phase, which is inconsistent with the
expectation of the Lense-Thirring precession of the inner flow. Further
theoretical studies are needed to conform with the observational results.Comment: Accepted for publication in APJ
- …