149 research outputs found

    Unsteady State Effectiveness Factor for Immobilized-Enzyme Reaction

    Get PDF
    The unsteady state concentration profiles of substrate in immobilized-enzyme particles were calculated numerically for the Michaelis-Menten kinetics. The analytical solution of the profile was also derived when the reaction was approximated to be of the first-order. The integration of the profile gives an unsteady state effectiveness factor. The unsteady state effectiveness factor was obtained under various conditions. The critical time at which a pseudo-steady state approximately holds, was presented graphically as a function of the steady state effectiveness factor for various V₀( =Kₘ/Cᴀ₀) values. The charts indicate that the pseudo-steady state is achived within 10-20s under usual operating conditions

    Methods for Estimating Effective Diffusivity of Substrate and Kinetic Parameters of Immobilized Enzyme

    Get PDF
    Two methods were presented for estimating simultaneously the kinetic parameters in the Michaelis-Menten equation, Kₘ and Vₘₐₓ, and the intraparticle effective diffusivity of substrate, Dₑᴀ, from the results of the transient changes in a batch reactor. The methods were applied to the estimation of the Kₘ and Vₘₐₓ values of α-chymotrypsin immobilized into firebrick particles or acrylamide gel, and the Dₑᴀ values of substrate through the supports. The experimental data of conversions both in the batch and tubular reactors were found to be calculated successfully by using the kinetic and transport parameters estimated by the proposed methods

    Progress on scanning field emission microscope development for surface observation

    Get PDF
    Abstract Fabrication technologies for X-band high gradient accelerating structures have been studied at KEK with SLAC, INFN and CERN. A scanning field emission microscope has been developed at KEK for the observation of the microscopic surface defects which may be related to the rf breakdown trigger. We present the progress on the experimental results of studying field emission characteristics by scanning an arbitrary area of 0.5 mm×0.5 mm on OFHC copper surface using a newly developed scanning field emission microscope

    Beta-glucan reflects liver injury after preservation and transplantation in dogs.

    Get PDF
    Graft failure and extrahepatic organ complications, which frequently develop after transplantation, may be related to inflammatory mediators stimulated by endotoxin (ET). The role of endotoxemia after liver transplantation is controversial and may depend upon differences in the ET assay method used in the various contradicting studies. While the standard Limulus amebocyte lysate (LAL) is reactive for ET and beta-glucan, a novel turbidimetric assay method enables separate determinations of ET and beta-glucan. Beagle dogs undergoing orthotopic liver transplantation were divided into two groups. In Group I (n = 6) the grafts were transplanted immediately and in Group II (n = 6) grafts were preserved for 48 h in University of Wisconsin (UW) solution. Animals received cyclosporine immunosuppression and were followed for 14 days. Daily measurements of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and lactate dehydrogenase (LDH) were performed. Samples for ET and beta-glucan measurement were collected serially and processed using the turbidimetric assay method. While no graft failure was seen in Group I, three of six Group II animals died from graft failure within 1 day after transplantation. Preservation and reperfusion injury was much more severe in the Group II grafts than in Group I grafts. While endotoxemia could not be detected, postoperative beta-glucan levels (undetectable pretransplant) were seen in both groups. Beta-glucan levels were much higher in Group II grafts than in Group I grafts, and correlated with the severity of liver damage. In conclusion, this study shows that beta-glucan, instead of ET, appears during the early posttransplant period. We believe that posttransplant elevation of beta-glucan is related to liver damage, especially endothelial damage by preservation and reperfusion

    Analysis of beam slowing-down process in large helical device based on Fokker–Planck operator including beam–beam Coulomb collision effect

    Get PDF
    The contribution of the beam–beam (b–b) Coulomb collision effect on the fast ion slowing-down process is investigated. The effect is evaluated experimentally in the large helical device (LHD) from the response of the neutron emission rate to the direction of the tangential hydrogen beam, which is used with the tangential deuterium beam. In addition, to analyze the experimental results, a Fokker–Planck (F–P) code is improved. It is observed that the decay time of the neutron emission rate after the deuterium beam is turned off depends on the direction of the hydrogen beam. This trend can be explained by the b–b Coulomb collision effect. The hydrogen beam, which has the same direction as the deuterium beam, deforms the fast deuteron velocity distribution due to the b–b Coulomb collision. As a result, the neutron decay time becomes longer than that with the opposite direction hydrogen beam. Our F–P simulation shows that the b–b Coulomb collision effect contributes to the decay time of the neutron emission rate. This simulation result is qualitatively similar to the experimental result. For quantitative analysis, consideration of the fast ion spatial transport, which is neglected in the present simulation, is required

    Carbon impurities behavior and its impact on ion thermal confinement in high-ion-temperature deuterium discharges on the Large Helical Device

    Get PDF
    The behavior of carbon impurities in deuterium plasmas and its impact on thermal confinement were investigated in comparison with hydrogen plasmas in the Large Helical Device (LHD). Deuterium plasma experiments have been started in the LHD and high-ion-temperature plasmas with central ion temperature (T i) of 10 keV were successfully obtained. The thermal confinement improvement could be sustained for a longer time compared with hydrogen plasmas. An isotope effect was observed in the time evolution of the carbon density profiles. A transiently peaked profile was observed in the deuterium plasmas due to the smaller carbon convection velocity and diffusivity in the deuterium plasmas compared with the hydrogen plasmas. The peaked carbon density profile was strongly correlated to the ion thermal confinement improvement. The peaking of the carbon density profile will be one of the clues to clarify the unexplained mechanisms for the formations of ion internal transport barrier and impurity hole on LHD. These results could also lead to a better understanding of the isotope effect in the thermal confinement in torus plasma

    Transoral surgery for superficial head and neck cancer: National Multi‐Center Survey in Japan

    Get PDF
    Head and neck cancers, especially in hypopharynx and oropharynx, are often detected at advanced stage with poor prognosis. Narrow band imaging enables detection of superficial cancers and transoral surgery is performed with curative intent. However, pathological evaluation and real-world safety and clinical outcomes have not been clearly understood. The aim of this nationwide multicenter study was to investigate the safety and efficacy of transoral surgery for superficial head and neck cancer. We collected the patients with superficial head and neck squamous cell carcinoma who were treated by transoral surgery from 27 hospitals in Japan. Central pathology review was undertaken on all of the resected specimens. The primary objective was effectiveness of transoral surgery, and the secondary objective was safety including incidence and severity of adverse events. Among the 568 patients, a total of 662 lesions were primarily treated by 575 sessions of transoral surgery. The median tumor diameter was 12 mm (range 1–75) endoscopically. Among the lesions, 57.4% were diagnosed as squamous cell carcinoma in situ. The median procedure time was 48 minutes (range 2–357). Adverse events occurred in 12.7%. Life-threatening complications occurred in 0.5%, but there were no treatment-related deaths. During a median follow-up period of 46.1 months (range 1–113), the 3-year overall survival rate, relapse-free survival rate, cause-specific survival rate, and larynx-preservation survival rate were 88.1%, 84.4%, 99.6%, and 87.5%, respectively. Transoral surgery for superficial head and neck cancer offers effective minimally invasive treatment
    corecore