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Abstract. The contribution of the beam-beam (b-b) Coulomb collision effect to the
fast ion slowing down process is investigated. The effect is evaluated experimentally
in the Large Helical Device (LHD) from the response of the neutron emission rate
to the direction of the tangential hydrogen beam, which is used with the tangential
deuterium beam. In addition, to analyze the experimental results, a Fokker-Planck
code is improved. It is observed that the decay time of the neutron emission rate after
the deuterium beam is turned off depends on the direction of the hydrogen beam. This
trend can be explained by the b-b Coulomb collision effect. The hydrogen beam, which
has the same direction of the deuterium beam, deforms the fast deuteron velocity
distribution due to the b-b Coulomb collision. As a result, the neutron decay time
becomes longer than that with the opposite direction hydrogen beam. Our Fokker-
Planck simulation shows that the b-b Coulomb collision effect contributes to the decay
time of the neutron emission rate. This simulation result is qualitatively similar to the
experimental result. For the quantitative analysis, consideration of the fast ion spatial
transport, which is neglected in the present simulation, is required.
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1. Introduction

Achieving high confinement of the energetic particle (EP) confinement is one of the

most important issues for fusion devices. Although the self-sustained plasma by

fusion-born alpha particles is necessary to realize fusion reactors, the confinement

performance of EPs is often degraded by several phenomena, such as neo-classical

transport and instabilities driven by EP itself. Therefore, the confinement property

of EPs with EP driven instabilities have been investigated in several experiments and

simulations[1, 2, 3, 4, 5]. It is known that classical models, which assume no wave-

induced EP transport, can not describe EP confinement accurately if the EP population

is large enough to drive toroidal Alfvén eigen modes. Since the instabilities depend on

the velocity and spatial space distribution of EPs, the estimation of the distribution is

important for the EP transport analysis.

In fusion plasmas, there are several EP sources, such as fusion reaction, neutral

beam injection (NBI), and radio frequency (RF) waves. EPs generated by different

mechanisms may interact with each other due to the beam-beam (b-b) Coulomb

collision, which is the Coulomb collision interaction between non-thermal particles, if

their relative velocity is sufficiently small. Here, the term “b-b Coulomb collision”

indicates not only the Coulomb collision between beam particles but also the collision

between non-thermal particles. For example, we consider ITER and DEMO. The

velocity of a 3.5 MeV alpha particle, which is generated by deuteron-deuteron (D-D)

fusion reaction, is similar to that of a 1 MeV deuterium beam particle though its kinetic

energy is three times greater than that of the beam particle.

Figure 1 is a simple example of the velocity distribution of deuteron and α particle

in a steady state ITER-like plasma including and excluding the b-b Coulomb collision

effect calculated by TASK/FP[6, 7]. Deuteron has a 1 MeV tangential NBI source

and alpha particle has a 3.5 MeV isotropic particle source assuming deuteron-triton

(D-T) fusion reaction. It is assumed that the bulk temperature and density, NBI

absorption power, and fast α particle deposition power is constant and uniform in this

calculation. To emphasize the b-b Coulomb collision effect, low collisionality plasma

is chosen (electron bulk density ne = 2 × 1019 m−3 and bulk temperature Te = 10

keV). When the b-b Coulomb collision effect is neglected, the velocity distribution of α

particle becomes an isotropic distribution (fig. 1-(d)) because the fast α particle source

is assumed to be an isotropic. On the other hand, in the case including the b-b Coulomb

collision effect, the velocity distribution of alpha particles (fig 1-(b)) is distorted into an

anisotropic distribution since only alpha particles whose pitch angles are similar to that

of deuterium beam are affected by the b-b Coulomb collision. Therefore, EP velocity

distribution should be estimated including the b-b Coulomb collision effect because the

distorted velocity distribution of alpha particles could result in a positive gradient in

the velocity space (see Ppara ∼ 5, Pperp ∼ 0 in fig. 1-(c)), which may excite instabilities

driven by EPs.

The behavior of NB fast ions in the Large Helical Device (LHD) has been often
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Figure 1. Conceptional image of the b-b Coulomb collision between deuteron NBI
and fusion born alpha particle. Figures (a) and (b) show the momentum distribution
function of deuteron with tangential NBI and alpha particles with isotropic EP source
including the b-b Coulomb collision effect and figures (c) and (d) show those excluding
the b-b Coulomb collision effect. Horizontal and vertical axes denote the momentum
parallel and perpendicular to the magnetic field. The value of the momentum is
normalized to the thermal momentum pthi =

√
miTi. Here, the subscript i indicates

particle species.
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analyzed by using five-dimensional drift kinetic Monte Carlo code GNET[8, 9, 10, 11].

Although the GNET code can analyze the behavior of fast ions accurately including the

b-b Coulomb collision and the finite orbit width effect, however, GNET code consumes

significant computational resources and calculation time. In the view of the experimental

analysis, the rapid but sufficiently accurate code which calculates the evolution of the

fast ion velocity distribution is required. Fokker-Planck (F-P) codes usually satisfy this

requirement. Although F-P codes have difficulty including the finite orbit width effect

unlike Monte Carlo codes, F-P codes require less computational resources and thus F-P

codes are suitable for the analysis of a substantial amount of experiment data. For

this reason, several F-P codes have been developed to simulate the behavior of fast

ions[12, 13, 14, 15, 16, 17]. In the present research, to investigate the fast ion behavior,

we have extended the three-dimensional (2D in momentum space and 1D in radial

direction) F-P simulation code TASK/FP, which is a F-P component of the integrated

code TASK[18] and TASK3D-a[19]. Although TASK/FP has been developed originally

as a full velocity distribution (full-f) prediction code, in this extension, TASK/FP is

modified to analyze experimental data as below. It is assumed that the ion velocity

distribution f is divided into thermal f0 and non-thermal δf components, namely

f = f0 + δf . Thermal component f 0 is assumed to be Maxwellian with measured

density and temperature and to be updated in each time step.

In this paper, a series of experiments have been performed to clarify experimentally

the b-b Coulomb collision effect in LHD. We focus especially on the contribution of the

b-b Coulomb collision effect to the fast velocity distribution by using TASK/FP. Since

TASK/FP implements several Coulomb collision models, such as the nonlinear Coulomb

collision model and the background Maxwell collision model, TASK/FP can separate

the contribution of the b-b Coulomb collision effect from the simulation results. The

details of the experiments will be explained in section 4.

The rest of this paper consists of the following. Analysis tools and models used in

this paper are introduced in section 2. The description of the experimental apparatus is

provided in section 3. The introduction of the experiment to evaluate the b-b Coulomb

collision effect is explained in section 4. The result of the experiments and the simulation

analyses are also provided in section 4. Discussion regarding the validity of the focus

on the neutron decay time is found in section 5. Conclusion appears in section 6.

2. Analysis tools

The physics process investigated in this work uses the combination of the two simulation

codes, FIT3D[20, 21, 22], and TASK/FP.

FIT3D code is composed of three components. The first component is a Monte

Carlo code which calculates the fast ion birth profile (HFREYA). The second component

is a Monte Carlo code which calculates radial redistribution of fast ions owing to the

prompt orbit loss effect (MCNB). The distortion of the fast ion birth profile due to

the finite orbit width effect is considered in this calculation. The third component is
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a code which calculates analytically two dimensional (1D in radial direction and 1D in

velocity space) steady state solution of the fast ion velocity distribution (FIT). FIT3D

takes the plasma temperature and density profiles, the beam energy Ebeam, the beam

port through power P port
beam, and the 3D magnetic equilibrium as input. It is noted that

since the neutral beam ionization is calculated by HFREYA, the observation data of

the beam shine-through loss is not used in the present analysis.

TASK/FP is a three dimensional (2D in momentum space and 1D in radial

direction) F-P code. It is used for the calculation of the evolution of the fast ion velocity

distribution instead of FIT. Although TASK/FP has been developed originally as a full

f prediction code, it is extended to calculate only non-thermal component of momentum

distribution to use for experimental analyses. In the present analysis, the momentum

distribution function is divided into two components, fs = f 0
s + f 1

s , where f 0
s and f 1

s

denote the momentum distribution function of bulk and non-thermal components, and

subscript s denotes “species.” The bulk component f 0
s is assumed to be Maxwellian

with experimentally measured density n0
s(ρ, t) and temperature Ts(ρ, t),

f 0
s (p) =

n0
s

4πm2
scTsK2(msc2/Ts)

exp

(
−msc2γs

Ts

)
, (1)

where γs = (1+p2/m2
sc

2)1/2, c is the velocity of light, and Kn is the n-th order modified

Bessel function of the second kind. The evolution of f 0
s is not solved by the F-P equation

but is replaced by eq. (1) in each time step. Only the non-thermal component f 1
s is

solved by the F-P equation as below:

∂f 1
s

∂t
=
∑

s′

Cs/s′(f 1
s , fs′) +H, (2)

Cs/s′(f 1
s , fs′) = ∇p ·

[↔
D

s/s′

C ·∇pf
1
s − Fs/s′

C f 1
s

]
(3)

H = SNB − Lcx − Lsink (4)

where ∇p is a derivative operator in two dimensional momentum space (momentum

p and pitch angle θ) and Cs/s′ is the Coulomb collision term, where superscript s

and s′ mean the incident and the background species, respectively. The tensor
↔
D

s/s′

C

and the vector Fs/s′

C denote the relativistic non-linear collisional diffusion and friction

coefficients, whose expressions are given by Ref. [23]. The collision term is expanded

by Legendre polynomial up to second order. In the present paper, H term includes

the NB source term SNB, the charge exchange loss term Lcx, and the particle sink term

Lsink, respectively. In the present analysis, TASK/FP takes the fast ion birth profile

calculated by FIT3D as input. NB source term becomes SNB = ∂f 1,abs(p, θ, ρ, t)/∂t.

The charge exchange loss term, Lcx, is given by:

Lcx(ps) = nnσcx(Es)vsf
1
s (ps), (5)

where nn is the deuterium neutral gas density, Es is the fast ion kinetic energy, and

vs = ps/msγs. The charge exchange cross section σcx is also given by[24]:

σcx(Ea) =
0.6937× 10−18(1− 0155 log10(Ea)2)

1 + 0.1112× 10−14E3.3
(m2). (6)
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The density of neutral gas, nn, is assumed to be constant in time. Since the present

version of TASK/FP can not take the data of the neutral gas density profile as input,

the radial profile of the neutral gas is chosen to be:

log10 nn(ρ) = (log10 nn(0)− log10 nn(1))

× (1− ρ2.5)0.8 + log10 nn(1), (7)

where nn(0) = 1014 m−3 and nn(1) = 1016 m−3, respectively. This profile is assumed to

be similar to the typical profile on LHD obtained by AURORA code[25]. The particle

sink term, Lsink(f 1
s ), is an artificial loss term. This term is intended to conserve the bulk

density in order to maintain the density to the measured density by reducing fast ions

which slow down to a few times of the thermal velocity, vs,th =
√

Ts/ms. This term is

given by:

Lsink(ps) = f 1
s /τsink (for vs < 3vs,th), (8)

where τsink = 1.0 ms is chosen. This value is sufficiently shorter than that of NB fast

ion slowing down time. In the present TASK/FP analysis, radial transport during fast

ion slowing down process is neglected. This means that fast ions are perfectly confined

until they are thermalized.

The fusion reaction rate is calculated by:

Sn =

∫∫
σnf(Eab)v̄fa(pa)fb(pb)dpadpb, (9)

where Eab ≡ 0.5mamb/(ma + mb)v̄2 is the relative kinetic energy, v̄ ≡ |va − vb| is the

relative velocity, and subscripts a, b indicate particle species, respectively. The fusion

cross section σnf(Eab) is given by Ref. [26]. It is noted that the contribution of the

fusion born tritons and helium ions to the deuteron velocity distribution is omitted in

the present calculation because the fusion reaction rate is sufficiently low and omitting

this contribution can accelerate the calculation. The reduction of fused deuterons is also

not considered in the present simulation for the same reason.

3. Experimental apparatus

Figure 2 shows the schematic view of the NBI system on LHD. LHD is equipped

with three tangential negative NBs (#1 - #3) and two radial positive NBs (#4-#5).

NB#1 and #2 are hydrogen beams and NB#3 is a deuterium beam. In the following

experiments, perpendicular NBs, NB#4 and NB#5, are not used. The typical values of

beam energy, port through power, and beam ion species in the following experiment are

illustrated in fig. 2. The toroidal magnetic field strength is |B| = 2.75 T, whose direction

is counter-clockwise from the top view (the same direction as NB#1 and NB#3) and the

preset of the magnetic axis position is Rax = 3.6 m. The plasma species is deuterium.

In the following experiments, we estimate the behavior of fast ions through the

measurement of the neutron emission rate from the D-D reaction. Although the thermal-

thermal fusion reaction will be dominant in the future reactor, like ITER, the beam-

thermal reaction is dominant in LHD plasmas. Therefore, the neutron emission rate is
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(NB#1: H)
E~180keV

(NB#2:H) E~160keV

(NB#3:D) E~140keV

P    ~5MWport

P    ~3.5MWport

P    ~2MWport

NB#5 E~35keV

NB#4 E~35keV

Figure 2. Top view of NBI systems on LHD. NB#1 to NB#3 are tangential negative-
NBI and NB#4 and NB#5 are perpendicular positive-NBI. Perpendicular NBIs are
not used in the present paper.

sensitive to the fast ion velocity distribution. In addition, since the cross-section of D-D

fusion reaction increases monotonically with the increase of the beam energy within the

range of the beam energy in LHD, the neutron emission rate reflects the slowing down

of the fast ions. For these reasons, we can infer the fast deuteron velocity distribution

from the observation of the neutron emission rate.

To observe the neutron emission rate, the Neutron Flux Monitor (NFM) has been

installed[27] on LHD. It can measure the global neutron emission rate with fine temporal

resolution.

4. Decay time of the neutron emission rate

In this paper, to investigate the contribution of the b-b Coulomb collision to the fast

ion velocity distribution, we do not focus on the absolute value of the neutron emission

rate, but on the neutron decay time after the deuterium beam has been turned off. This

is because for the estimation of the neutron emission rate there are some uncertainties

in the present experiment, such as the effective charge, the hydrogen to deuterium

ratio, and the hydrogen to helium ratio. The absolute value of the neutron emission

rate is sensitive to these uncertainties because the neutron emission rate is proportional

to the bulk and fast deuteron densities. On the other hand, the neutron decay time

is not sensitive to the uncertainties. This reason can be explained as below. The

neutron decay time reflects the slowing down of NB fast deuterons. The slowing down

of NB fast deuterons is not sensitive to the uncertainties because the slowing down of

fast ions depends mainly on the electron density and the temperature, which can be

measured. Therefore, the neutron decay time is more reliable than the absolute value

of the neutron emission rate. The approach which focuses on the neutron decay time
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Figure 3. Typical waveform of “co H” case in this series of experiments (shot number:
SN137352). The hydrogen beam is turned on at t = 4.3 sec and the deuterium beam
is turned off at t = 4.8 sec.

has been adopted by previous works[28, 29] to investigate the NB fast ion slowing down

process theoretically and experimentally. The details of the validity focusing on the

neutron decay time will be discussed in sec. 5.

In the following sections, we investigate the contribution of the b-b Coulomb

collision to the fast ion velocity distribution. To clarify the effect, we performed the

following deuterium experiments on LHD. There are three tangential NBIs. One NBI is

the deuterium beam and the other NBIs are hydrogen beams, which are in the opposite

direction from each other, as shown in fig. 2. These three beams have similar kinetic

energy Ebeam ∼ 140 − 180 keV. In the experiments, the combination of the deuterium

beam and one of the hydrogen beams was used. We use the hydrogen beam because

the hydrogen beam does not contribute explicitly to the neutron emission rate. If the

direction of the hydrogen beam has an influence on the neutron emission rate, this

means that the velocity distribution of the NB fast deuteron is distorted due to the b-b

Coulomb collision between proton and deuteron. For example, if the hydrogen beam has

the same direction of the deuterium beam, it can be considered that the neutron decay

time will be longer. This is because the velocity distribution of the NB fast deuteron

is broadened to the high velocity direction due to the b-b Coulomb collision. On the

contrary, if the hydrogen beam has the opposite direction of the deuterium beam, it can

be considered that the neutron decay time is hardly affected by the NB fast protons.

This is because the relative velocity between these two fast ions is too large to permit

interaction with each other.

4.1. Experimental results

Figure 3 shows the typical waveform of this series of experiments. This figure indicates

(a): NB port through power, (b): electron cyclotron heating (ECH) power, (c): electron
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temperature and density on axis, and (d): neutron emission rate, respectively. ECH is

used to control the electron temperature. Here, the typical error of the plasma parameter

measurement is approximately less than 10%. We focus on the neutron decay time, τ expn ,

after t = 4.8 sec when the deuterium beam is turned off. In the case shown, the hydrogen

beam (NB#1), which has the same direction of the deuterium beam (NB#3), overlaps

with NB#3. From here, we call this kind of case “co H injection,” or simply “co H.” In

addition, the case using NB#2 instead of NB#1 is called “counter H injection” or “ctr.

H.” Finally, the case using no hydrogen beam is called “no H injection” or “no H.”

Here, we define the classical neutron decay time τn[28, 29], which is the e-folding

time of the decay of the fusion reactivity due to the fast ion slowing down. The classical

neutron decay time τn is derived theoretically by considering the fast ion deceleration

from their injection energy, E0, to the energy E1, at which the fusion reactivity has

fallen by 1/e.

τn ≡ τse
3

ln

(
E3/2

0 + E3/2
C

E3/2
1 + E3/2

C

)
, (10)

τse ≡
3(2π)3/2ϵ20mDT

3/2
e

nee4m
1/2
e lnΛ

, (11)

where EC ∼ 18.6Te is the critical energy where ion drag is equal to electron drag, me

and mD are rest mass of electron and deuteron, and τse is the Spitzer beam slowing

down time on electron. E1 satisfies the following relation:

σnf(E1)v1
σnf(E0)v0

≡ 1

e
, (12)

where v0 and v1 are satisfying E0 = mDv20/2 and E1 = mDv21/2. To estimate τse, we

choose time averaged ne and Te during 100 ms after the deuteron beam is turned off

on ρ = 0.3. The radial point ρ = 0.3 is chosen because the neutron emission around

the point is dominant. The duration 100 ms is chosen because ECH injection continues

at least 100 ms after the deuterium beam is turned off in all shots. In this duration,

the plasma parameters do not change drastically, as shown in figure 3. For example, in

fig. 3, the deuterium NBI is turned off at t = 4.8 s and the electron temperature and

density maintain their value until t = 4.9s ( Te sharply drops after t = 4.9 s). In the

present cases, the typical value of NB#3 injection energy is E0 ∼ 140 keV (Only NB#3

contributes explicitly to the fusion reaction) and E1 ∼ 81.2 keV, respectively. It is

noted that the fast ion confinement is not considered at the derivation of τn though the

classical fast ion deceleration is taken into account. Since the fast ion confinement time

is not infinity in real plasmas, τn tends to be longer than the experimentally observed

neutron decay time.

Figure 4 shows the decay time of the neutron emission rate, τ expn , against to the

classical neutron decay time, τn in each shot. Circle, square, and rhombus points indicate

“co H,” “ctr. H,” and “no H” cases, respectively. In fig. 4, the value of τ expn is estimated

by a curve fitting to g(t) = C × exp(−t/τ expn ) during 100 ms after the deuteron beam is

turned off.
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Figure 4. The decay time of the neutron emission rate in experiment, τ expn , against to
the classical neutron decay time, τn, is displayed. Circle, square, and rhombus points
indicate “co H,” “ctr. H,” and “no H” cases, respectively. This figure includes 18 shots
on LHD.

From fig. 4, it is found that τ expn separates from τn as τn increases among three

cases. This tendency can be roughly grasped by the following expression:

(τ expn )−1 ∼ τ−1
n + τ−1

c , (13)

where τc denotes the fast ion confinement time, which has been omitted at the derivation

of τn. In D-D reaction cases, the fast ion slowing down and the fast ion loss cause the

decay of the fusion reactivity. Here, the term “fast ion loss” indicates the actual spatial

transport. The first and second terms of eq. (13) describe the neutron decay due to

the fast ion slowing down and the fast ion loss, respectively. When the fast ion slowing

down is sufficiently faster than the fast ion loss, the experimental neutron decay time is

decided mainly by τn. In the contrary case, when the fast ion slowing down is sufficiently

slower than the fast ion loss, the experimental neutron decay time is decided by the fast

ion confinement time. Therefore, it can be considered that the experimental neutron

decay time obeys τ exp ∼ τn in the low τn region and approaches gradually to the fast

ion confinement time, τ expn ∼ τc, as τn increases.

From fig. 4, it is also found that the experimental neutron decay time of the “co H”

case becomes longer than that of the “ctr. H” case and the “no H” cases, as predicted

above. It can be considered that there are two possible factors which cause the difference

between “co H” and the other two cases. One reason is that the fast ion loss may be

different among the three cases with the same τn. This is because the beam port through

power is different between NB#1 and NB#2 for EP driven instabilities. The difference

of the beam port through power causes the difference of the fast ion pressure gradient.

In addition, the presence of co-direction H beam affects the fast deuteron pitch angle

distribution. The distortion of the pitch angle distribution influences the neo-classical

transport. As a result, the fast ion loss among the three cases are different from each

other. The other factor is the contribution of the b-b Coulomb collision as noted above.

Since the b-b Coulomb collision effect is not influenced explicitly by the bulk density

and temperature but by the fast ion density, this effect is independent explicitly from

τn. Therefore, the contribution of the b-b Coulomb collision is clarified in the long τn
region.
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In the following section, since it is too difficult to estimate EP transport without

instability analysis, we aim to estimate the contribution of the b-b Coulomb collision

using Fokker-Planck simulation.

4.2. Simulation results

To simulate the evolution of the neutron emission rate using TASK/FP, the following

assumptions are adopted. Since the ion temperature is not measured in the present

experiments, it is assumed to be the same as the electron temperature, namely Te = Ti.

The ratio of bulk proton and deuteron densities are assumed to satisfy n0
D/(n

0
D+n0

H) =

0.9. The superscript 0 indicates the bulk components. The effective charge is assumed

to be Zeff = 2 in the whole plasma and the whole discharge. Here, carbon ion is assumed

to be impurity. Ion densities are composed of the bulk and the fast ion densities, that

is nD = n0
D + n1

D and nH = n0
H + n1

H . However, the fast ion densities n1
D and n1

H are

not taken into account in the charge neutrality; ne = n0
D + n0

H + 6nC . Because of this

reason, the total deuteron and proton densities and the neutron emission rate are over-

estimated. The fast ion densities are given by n1
s =

∫
f 1
s dp. The contribution of fusion

born protons and tritons to the deuteron velocity distribution are neglected because the

DD reaction rate is sufficiently low. Since we focus on the tangential deuterium beam,

the trapped particle effect is omitted. In the following calculation, the time evolutions

of fast proton velocity distribution f 1
H and the fast deuteron velocity distribution f 1

D are

calculated. The time evolutions of the electron and carbon velocity distribution are not

calculated and are assumed to be Maxwellian, that is fe = f 0
e and fC = f 0

C . Impacts of

these assumptions to the simulation results are discussed in sec. 5.

Figure 5 shows the evolutions of the observed and simulated neutron emission rate

in six shots indicated in figure 4. Although the deuterium NBI begins at t = 3.3 sec,

these calculations start at t = 3.31 sec because of the lack of data at t = 3.3 sec. Red

solid curve indicates the experimental result of the neutron emission rate. Green dashed

and blue dotted curves denote the simulation results including the deuteron-proton

b-b Coulomb collision effect and those excluding the deuteron-proton b-b Coulomb

collision effect, respectively. The difference between these two simulations comes from

the difference of the Coulomb collision term Cs/s′(fs, fs′). In the case including the

deuteron-proton b-b Coulomb collision effect, the Coulomb collision term becomes∑
s′ C

s/s′(f 1
s , fs′) where s′ includes electron, proton, deuteron, and carbon ion. On

the other hand, in the case excluding the deuteron-proton b-b Coulomb collision, the

background proton velocity distribution is Maxwellian only when the incident species

is deuteron, namely:
∑

s′′ C
D/s′′(f 1

D, fs′′) + CD/H(f 1
D, f

0
H), where s′′ includes electron,

deuteron, and carbon ion. If the incident species is proton, the collision term is∑
s′ C

H/s′(f 1
H , fs′). Both of these two collision models include the deuteron-deuteron

b-b Coulomb collision. Excluding the deuteron-proton b-b Coulomb collision model

is intended to reduce the contribution of the fast protons to the deuteron velocity

distribution in order to clarify the deuteron-proton b-b Coulomb collision effect. For
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Figure 5. Evolutions of the neutron emission rate in six shots (indicated in fig. 4)
are shown. Red solid, green dashed, and blue dotted curves denote the results of
experiment and simulations including or excluding the deuteron-proton b-b Coulomb
collision effect, respectively. Deuterium beam is turned off at t = t0. The value of t0
in each shot is displayed in each figure.

simplicity, we call these two simulations cases as incl. b-b and excl. b-b.

Since the present F-P calculations do not include the fast ion loss mechanism such

as classical, neo-classical and EP driven instabilities, the simulated values of the neutron

emission rate are higher than those of the measured neutron emission rate in each case,

as expected. It is noted, however, that the fast ion loss during fast ion birth process,

such as prompt loss and beam shine through, is included as noted in sec. 2. From fig. 5

(c)-(f), it is found that there is no difference between incl. b-b and excl. b-b cases. This

means the deuteron-proton b-b Coulomb collision has no contribution to the deuteron

velocity distribution except co H cases.

The measured and two simulated neutron decay times are listed in table 1, where
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SN label τn τ expn τ incl .n τ excl .n

137352 co H 0.15 0.097 0.10 0.089

137347 co H 0.38 0.19 0.24 0.22

137359 ctr. H 0.13 0.078 0.084 0.084

137363 ctr. H 0.35 0.12 0.19 0.18

137353 no H 0.053 0.037 0.040 0.040

137364 no H 0.39 0.13 0.22 0.22

Table 1. The classical neutron decay time τn, the decay time of the measured and
two kinds of simulated neutron emission rates τ expn , τ incl.n , and τexcl.n are tabulated in
six shots. The dimension of these values are second.

τ incl .n and τ excl .n denote the simulated neutron decay time of incl. b-b and excl. b-b cases.

In short τn cases (SN137352, SN137359, and SN137346), τ expn and τ incl .n have a good

agreement because the contribution of collisional slowing down is sufficiently stronger

than that of fast ion loss. Note that since the “excl. b-b” case does not include the

deuteron-proton b-b Coulomb collision effect, which is included in actual plasmas, the

value of τ excl .n can be less than τ expn . In long τn cases, on the contrary, the differences

between τ expn and τ incl .n are not negligible. In “ctr. H” and “no H” cases, there are

minute differences between τ incl .n and τ excl .n . This result means that the deuteron-proton

b-b Coulomb collision does not affect the fast deuteron velocity distribution in “ctr. H”

and “no H” cases as predicted above. On the other hand, in “co H” cases, it is found

that there are meaningful differences between two simulated values. This means that the

presence of the deuteron-proton b-b Coulomb collision extends the simulated neutron

decay time τ incl .n . Figure 6 shows the energy distributions of f 1 one dimensionally against

to the energy in the deuteron beam direction (θ ∼ 0.17 radian) at t − t0 = 0 ms and

200ms in the three long τn cases. This figure clarifies the contribution of the deuteron-

proton b-b Coulomb collision to the energy distribution. In figure 6-(a), green curves,

which denote f 1 of incl. b-b case, are accelerated rather than blue curves owing to the

deuteron-proton b-b Coulomb collision. Conversely, in figures 6-(b) and (c), there is

little difference between green and blue curves.

The simulation results are plotted on figure 7 with the experiment data, which have

already been shown in fig. 4. The simulation result shows the similar tendency that the

decay time of the neutron emission rate of “co H” case is longer than the other two cases

in long τn region. From simulation results shown in figs. 5, 6, and 7 it is found that

the b-b Coulomb collision effect has a meaningful contribution to the decay time of the

neutron emission rate. However, since the difference of τ expn around τn ∼ 0.35 between

“co H” and the other two cases is larger than the difference of τ incl .n between “co H” and

the other two cases, the contribution of the b-b Coulomb collision to the decay time is

insufficient to explain the experimental results, as shown in fig. 7. It is considered that

the fast ion loss, which is omitted in the present simulation, may be different between

the “co H” case and the other two cases.
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5. Validity of focusing on the decay time

As discussed in the first paragraph in sec. 4, the deuteron ratio and the effective charge

strongly affect the fusion reactivity, which is proportional to the deuteron bulk density.

The neutron decay time, however, is not sensitive to the uncertainty of the deuteron

density because the decay of the fusion reactivity due to the fast ion slowing down

mainly depends on the electron density and the temperature, especially in the region

where the energy of the fast ion is greater than the critical energy EC . In most of the

present experiments, the time averaged electron temperature on ρ = 0.3 during 100 ms

after the deuterium beam is turned off is less than 4 keV (Only two cases reach to 4.2

and 4.4 keV). Then, the energy E1 satisfies EC ! E1 in most of the present analyses.
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Figure 8 shows the evolutions of the neutron emission rate in two shots (“co H”

case). Green dashed and black dotted curves denote τ incl .n with Zeff = 2 and 3. It is

found that the absolute value of the neutron emission rate with Zeff = 3 is reduced by

∼ 20% than that with Zeff = 2. On the other hand, their decay time are not sensitive

to Zeff . For example, the simulated neutron decay time in short τn case (SN137352)

are τ incl .n = 0.10, (ZEFF = 2) and τ incl .n = 0.10, (ZEFF = 3). And the simulated

neutron decay times in long τn case (SN137347) are τ incl .n = 0.24, (ZEFF = 2) and

τ incl .n = 0.25, (ZEFF = 3), respectively. According to these results, we consider that

the contribution of the bulk ion uncertainties to the neutron decay time is sufficiently

small in the present analysis.

In addition, though the ion temperature is assumed to be same as the electron

temperature, it can be considered that the electron temperaure is higher than the

ion temperature beucase the present plasmas are heated by ECH, as shown in fig.

3. It is known that the beam-thermal fusion reactivity increases with the ion bulk

temperature[30]. Therefore, the assumption of Te = Ti also leads to over-estimation of
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the neutron emission rate. Figure 9 shows the evolutions of the neutron emission rate in

two shots (“co H” case). Green dashed and black dotted curves denote τ incl .n with Ti = Te

and Ti = Te/2 assumptions. It is found that the absolute value of the neutron emission

rate with Ti = Te/2 is reduced by ∼ 5% than that with Ti = Te. The neutron decay

time is reduced by a few percentages. For example, the simulated neutron decay times

in short τn case (SN137352) are τ incl .n = 0.10, (Ti = Te) and τ incl .n = 0.095, (Ti = Te/2),

and that in long τn case (SN137347) are τ incl .n = 0.24, (Ti = Te) and τ incl .n = 0.24,

(Ti = Te/2), respectively. From this result, it can be considered that the neutron decay

time is not sensitive to the uncertainty of the ion temperature.

According to these results, focusing on the neutron decay time is valid rather than

focusing on the neutron emission rate itself.

6. Conclusion

In this paper, a series of experiments and simulation analyses have been performed to

investigate the contribution of the beam-beam (b-b) Coulomb collision effect to the fast

ion slowing down process. In these experiments, the deuterium plasma is heated by both

hydrogen and deuterium tangential NBIs. To evaluate the b-b Coulomb collision effect,

we focused on the decay time of the neutron emission rate in deuterium plasma after the

deuterium NBI has been turned off. If the hydrogen beam has the same direction of the

deuterium beam (“co H” case), it is expected theoretically that the decay time of the

neutron emission rate becomes longer than that with the opposite direction hydrogen

beam (“ctr. H” case). This is because the deuteron velocity distribution is broadened

to high velocity region due to b-b Coulomb collision. On the other hand, if the hydrogen

beam has an opposite direction of the deuterium beam, it is also expected theoretically

that the fast protons do not interact with the fast deuterons due to their high relative

velocity. To confirm this prediction, a series of experiments have been performed.

From the experimental results shown in fig. 4, it is found that the difference of the

hydrogen beam direction influences the decay time of the neutron emission rate τ expn .

There are two possible factors causing these different tendencies of the decay time of

the neutron emission rate. One is the b-b Coulomb collision effect, the other is the fast

ion loss effect. Since the fast ion loss mechanism is too complicated to estimate without

instability code, in the present paper we aimed to estimate the contribution of the b-b

Coulomb collision effect by using Fokker-Planck (F-P) code.

The simulation results are plotted on fig. 7 with the experiment data, which are

already shown in fig. 4. It is noted that since our F-P simulation ignores the fast ion loss

during fast ion slowing down process, the neutron emission rate and its decay times are

over-estimated. From simulation results shown in figs. 5 and 6 it is found that the b-b

Coulomb collision effect has a meaningful contribution to the decay time of the neutron

emission rate. However, since the difference of τ expn around τn ∼ 0.35 between “co H”

and the other two cases is larger than the difference of simulated values between “co H”

and the other two cases, the contribution of the b-b Coulomb collision does not seem to
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be fundamental for the interpretation of the experimental results. It is considered that

the fast ion loss, which is omitted in the present simulation, may be different between

the “co H” case and the other two cases. To proceed with the analysis, experiments in

which fast ion loss is suppressed as much as possible or analyses including fast ion loss

due to the neo-classical mechanism and fast ion driven instabilities are required. These

are future works.
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