3 research outputs found

    Hyperspectral Stimulated Raman Scattering Microscopy Unravels Aberrant Accumulation of Saturated Fat in Human Liver Cancer

    No full text
    Lipid metabolism is dysregulated in human cancers. The analytical tools that could identify and quantitatively map metabolites in unprocessed human tissues with submicrometer resolution are highly desired. Here, we implemented analytical hyperspectral stimulated Raman scattering microscopy to map the lipid metabolites in situ in normal and cancerous liver tissues from 24 patients. In contrast to the conventional wisdom that unsaturated lipid accumulation enhances tumor cell survival and proliferation, we unexpectedly visualized substantial amount of saturated fat accumulated in cancerous liver tissues, which was not seen in majority of their adjacent normal tissues. Further analysis by mass spectrometry confirmed significant high levels of glyceryl tripalmitate specifically in cancerous liver. These findings suggest that the aberrantly accumulated saturated fat may have great potential to be a metabolic biomarker for liver cancer

    Stimulated Raman Scattering Microscopy Reveals Aberrant Triglyceride Accumulation in Lymphatic Metastasis of Papillary Thyroid Carcinoma

    No full text
    Lipid metabolic alterations are known to play a crucial role in cancer metastasis. As a key hub in lipid metabolism, intracellular neutral lipid accumulation in lipid droplets (LDs) has become a signature of aggressive human cancers. Nevertheless, it remains unclear whether lipid accumulation displays distinctive features in metastatic lesions compared to the primary ones. Here, we integrated multicolor stimulated Raman scattering (SRS) imaging with confocal Raman spectroscopy on the same platform to quantitatively analyze the amount and composition of LDs in intact human thyroid tissues in situ without any processing or labeling. Inspiringly, we found aberrant accumulation of triglycerides (TGs) in lymphatic metastases but not in normal thyroid, primary papillary thyroid carcinoma (PTC), or normal lymph node. In addition, the unsaturation degree of unsaturated TGs was significantly higher in the lymphatic metastases from patients diagnosed with late-stage (T3/T4) PTC compared to those of patients diagnosed with early-stage (T1/T2) PTC. Furthermore, both public sequencing data analysis and our RNA-seq transcriptomic experiment showed significantly higher expression of alcohol dehydrogenase-1B (ADH1B), which is critical to lipid uptake and transport, in lymphatic metastases relative to the primary ones. In summary, these findings unravel the lipid accumulation as a novel marker and therapeutic target for PTC lymphatic metastasis that has a poor response to the regular radioactive iodine therapy

    Caffeic Acid Phenethyl Ester, a Major Component of Propolis, Suppresses High Fat Diet-Induced Obesity through Inhibiting Adipogenesis at the Mitotic Clonal Expansion Stage

    No full text
    In the present study, we aimed to investigate the antiobesity effect of CAPE in vivo, and the mechanism by which CAPE regulates body weight in vitro. To confirm the antiobesity effect of CAPE in vivo, mice were fed with a high fat diet (HFD) with different concentrations of CAPE for 5 weeks. CAPE significantly reduced body weight gain and epididymal fat mass in obese mice fed a HFD. In accordance with in vivo results, Oil red O staining results showed that CAPE significantly suppressed MDI-induced adipogenesis of 3T3-L1 preadipocytes. FACS analysis results showed that CAPE delayed MDI-stimulated cell cycle progression, thereby contributing to inhibit mitotic clonal expansion (MCE), which is a prerequisite step for adipogenesis. Also, CAPE regulated the expression of cyclin D1 and the phosphorylation of ERK and Akt, which are upstream of cyclin D1. These results suggest that CAPE exerts an antiobesity effect in vivo, presumably through inhibiting adipogenesis at an early stage of adipogenesis
    corecore