16 research outputs found

    Determination of serum CA724 levels using fluorescence immunochromatography

    No full text
    Abstract Background Carbohydrate antigen 724 (CA724) is a sensitive and specific indicator for multiple malignant tumors. The aim of this study was to establish a Eu-time resolved fluorescence immunochromatography (Eu-TRFICO) method for quantitative detection of CA724 in serum. Methods Eu-TRFICO strips were optimized and assembled. The sensitivity, specificity and precision were evaluated using CA724 standard dilutions and matrix serum. Meanwhile, the reference interval, comparison, and sensitivity/specificity were performed using clinical negative/positive gastric cancer serum samples. Results The standard curve equation was y = 9.869 x − 154.12 (R 2  = 0.993), and the sensitivity was 0.42 U/mL. The common interferents in serum could not affect the quantitative results with low cross-reactivities (all no more than 1.09%). All average recoveries of the intra- and interbatch ranged from 102.38 to 106.40%, and all CVs were below 10%. The reference interval of the healthy subjects was  9.54 U/mL. Additionally, a high Pearson r (0.9503) and sensitivity/specificity (92.86%/94.20%) were obtained. Conclusion This study prepared Eu-TRFICO strips with high sensitivity, specificity, precision and satisfactory clinical testing performance, which provides more options for clinical quantitative and convenient testing of CA724

    Phylotranscriptomic insights into a Mesoproterozoic-Neoproterozoic origin and early radiation of green seaweeds (Ulvophyceae)

    No full text
    The Ulvophyceae, a major group of green algae, is of particular evolutionary interest because of its remarkable morphological and ecological diversity. Its phylogenetic relationships and diversification timeline, however, are still not fully resolved. In this study, using an extensive nuclear gene dataset, we apply coalescent- and concatenation-based approaches to reconstruct the phylogeny of the Ulvophyceae and to explore the sources of conflict in previous phylogenomic studies. The Ulvophyceae is recovered as a paraphyletic group, with the Bryopsidales being a sister group to the Chlorophyceae, and the remaining taxa forming a clade (Ulvophyceae sensu stricto). Molecular clock analyses with different calibration strategies emphasize the large impact of fossil calibrations, and indicate a Meso-Neoproterozoic origin of the Ulvophyceae (sensu stricto), earlier than previous estimates. The results imply that ulvophyceans may have had a profound influence on oceanic redox structures and global biogeochemical cycles at the Mesoproterozoic-Neoproterozoic transition

    Piezotronic Effect Enhanced Photocatalysis in Strained Anisotropic ZnO/TiO<sub>2</sub> Nanoplatelets <i>via</i> Thermal Stress

    No full text
    Effective piezoelectric semiconductor based hybrid photocatalysts are successfully developed by assembling TiO<sub>2</sub> nanoparticles on ZnO monocrystalline nanoplatelets. The piezopotential can be introduced and tuned by thermal stress on the piezoelectric material of ZnO monocrystalline nanoplatelets through cooling hybrid photocatalysts from high temperature to room temperature with different rates based on the mismatched thermal expansion coefficient of the two materials, which can be used to engineer the heterojunction band structure and significantly enhance the photocatalytic performance in a wide range by improving charge separation. It is proposed that the piezotronic effect enhanced photocatalyst will provide a strategy for high-performance photocatalysis applications

    Effects of Acupuncture on 1-chloro-2,4-dinitrochlorobenzene-induced Allergic Contact Dermatitis in Mice

    No full text
    Allergic contact dermatitis (ACD) is a chronic inflammatory skin disease. Topical corticosteroids are the first-line therapy for ACD despite their significant adverse effects. Acupuncture has been widely used in the treatment of various skin diseases, but its underlying mechanism remains unrevealed. In this study, we investigated the characteristics of acupuncture treatment based on effectiveness and mechanism. BALB/c mice received 1-chloro-2,4-dinitrobenzene (DNCB) application to build AD-like model. Results showed that acupuncture was an effective treatment method in inhibiting inflammatory conditions, serum IgE levels, and expression of proinflammatory cytokine Th2 (IL-4, IL-6), and Th2 (IL-1β, TNF-α) mRNA compared with DNCB treatment. Acupuncture treatment also inhibited nuclear factor-κB p65, phosphorylation of IκBα, and phosphorylation of occludin proteins expression. Furthermore, it could improve the expression of epidermal growth factor in both mRNA and protein levels. These results suggest that acupuncture, as an alternative therapy treatment for its no significant side effects, was effective in alleviating ACD by reducing proinflammatory cytokines and changing proteins' expression

    Phylotranscriptomics unveil a Paleoproterozoic-Mesoproterozoic origin and deep relationships of the Viridiplantae

    No full text
    Abstract The Viridiplantae comprise two main clades, the Chlorophyta (including a diverse array of marine and freshwater green algae) and the Streptophyta (consisting of the freshwater charophytes and the land plants). Lineages sister to core Chlorophyta, informally refer to as prasinophytes, form a grade of mainly planktonic green algae. Recently, one of these lineages, Prasinodermophyta, which is previously grouped with prasinophytes, has been identified as the sister lineage to both Chlorophyta and Streptophyta. Resolving the deep relationships among green plants is crucial for understanding the historical impact of green algal diversity on marine ecology and geochemistry, but has been proven difficult given the ancient timing of the diversification events. Through extensive taxon and gene sampling, we conduct large-scale phylogenomic analyses to resolve deep relationships and reveal the Prasinodermophyta as the lineage sister to Chlorophyta, raising questions about the necessity of classifying the Prasinodermophyta as a distinct phylum. We unveil that incomplete lineage sorting is the main cause of discordance regarding the placement of Prasinodermophyta. Molecular dating analyses suggest that crown-group green plants and crown-group Prasinodermophyta date back to the Paleoproterozoic-Mesoproterozoic. Our study establishes a plausible link between oxygen levels in the Paleoproterozoic-Mesoproterozoic and the origin of Viridiplantae

    Double-Channel Piezotronic Transistors for Highly Sensitive Pressure Sensing

    No full text
    Piezotronic transistors (PTs) that utilize inner crystal potential generated by interface piezoelectric polarization charges as the gate voltage have great potential applications in force/pressure-triggered or controlled electronic devices, sensors, human–machine communication, and microelectromechanical systems. Although the performance of PTs has been partially enhanced by exploring special materials with different geometries or high piezoelectricity, few studies have been focused on the structure design of PT itself to more effectively enhance the performance and structural reliability. Here, an integrated double-channel plane piezotronic transistor is invented as a high-performance pressure-sensing technology. Owing to the double-channel modulation and the plane structure, the PT has the merits of high pressure sensitivity (84.2–104.4 meV/MPa) and high structural reliability, which provides the opportunity for great applications, such as human–computer interfacing, biosensing, and health monitoring

    Ultrasensitive Vertical Piezotronic Transistor Based on ZnO Twin Nanoplatelet

    No full text
    High sensitivity of pressure/strain sensors is the key to accurately evaluating external mechanical stimuli and could become more important in future generations of human–machine interfaces and artificial skin. Here we report the study of a two-terminal piezotronic transistor based on ZnO twin nanoplatelets (TNPT). Owing to the mirror symmetrical structure of ZnO twin nanplatelet, compressive pressure-induced positive piezoelectric polarization charges created at both metal–semiconductor interfaces can simultaneously lower both Schottky barrier heights and thus significantly modulate the carrier transport. Our device exhibits the highest pressure sensitivity of 1448.08–1677.53 meV/MPa, which is more than ∼20 times larger than the highest value reported previously, and a fast response time of <5 ms. In addition, it can be used as a photodector with an ultrahigh external photoresponsivity of ∼1.45 × 10<sup>4</sup> AW<sup>–1</sup>, which is ∼10<sup>5</sup> times larger in magnitude than that of commercial UV photodetectors. The coupling between the mirror symmetrical structure and strong piezotronic effect in ZnO twin nanoplatelets may enable the development of ultrasensitive pressure/strain sensors for various applications such as artificial skin, health monitoring, and adaptive biomedical probes

    Additional file 4: of Stearoyl-CoA desaturase-1 promotes colorectal cancer metastasis in response to glucose by suppressing PTEN

    No full text
    Figure S4. PTEN mediates SCD1-induced migration and invasion of SW116 cells. (A) Representative Western blot of SCD1, β-Catenin, STAT3, S6K and JNK in CRC cells transfected with shSCD1 or SCD1 cDNA. (B) Representative Western blot and quantification data of PTEN in SW116 cells transfected with siRNAs for PTEN (si1 and si2). (C) Representative photographs of transwell assays of shSCD1 or shNC-transfected SW116 after being transfected with PTEN siRNAs (siPTEN) or negative control scramble siRNAs (siNC). The scale bar is 100 μm. (D, E) Histograms show the numbers of migrated (D) and invasive (E) SW116 cells. (F) Representative Western blots and quantified results of SCD1, PTEN, Akt, p-Akt (Ser473), p-Akt (Thr308), E-cadherin and vimentin. (TIFF 2175 kb

    Additional file 2: of Stearoyl-CoA desaturase-1 promotes colorectal cancer metastasis in response to glucose by suppressing PTEN

    No full text
    Figure S2. Glucose promotes migration and invasion of SW116 cells. (A) Transwell assay of SW116 cells treated with 0 mM (G0), 5.5 mM (G5.5), 11 mM (G11) or 25 mM (G25) glucose. The scale bar is 100 μm. (B, C) Histograms show the number of migrated (B) and invasive (C) SW116 cells. (TIFF 1154 kb
    corecore