682 research outputs found

    Forest disturbance and recovery: A general review in the context of spaceborne remote sensing of impacts on aboveground biomass and canopy structure

    Get PDF
    Abrupt forest disturbances generating gaps \u3e0.001 km2 impact roughly 0.4–0.7 million km2a−1. Fire, windstorms, logging, and shifting cultivation are dominant disturbances; minor contributors are land conversion, flooding, landslides, and avalanches. All can have substantial impacts on canopy biomass and structure. Quantifying disturbance location, extent, severity, and the fate of disturbed biomass will improve carbon budget estimates and lead to better initialization, parameterization, and/or testing of forest carbon cycle models. Spaceborne remote sensing maps large-scale forest disturbance occurrence, location, and extent, particularly with moderate- and fine-scale resolution passive optical/near-infrared (NIR) instruments. High-resolution remote sensing (e.g., ∼1 m passive optical/NIR, or small footprint lidar) can map crown geometry and gaps, but has rarely been systematically applied to study small-scale disturbance and natural mortality gap dynamics over large regions. Reducing uncertainty in disturbance and recovery impacts on global forest carbon balance requires quantification of (1) predisturbance forest biomass; (2) disturbance impact on standing biomass and its fate; and (3) rate of biomass accumulation during recovery. Active remote sensing data (e.g., lidar, radar) are more directly indicative of canopy biomass and many structural properties than passive instrument data; a new generation of instruments designed to generate global coverage/sampling of canopy biomass and structure can improve our ability to quantify the carbon balance of Earth\u27s forests. Generating a high-quality quantitative assessment of disturbance impacts on canopy biomass and structure with spaceborne remote sensing requires comprehensive, well designed, and well coordinated field programs collecting high-quality ground-based data and linkages to dynamical models that can use this information

    Evidence against correlations between nuclear decay rates and Earth-Sun distance

    Get PDF
    We have reexamined our previously published data to search for evidence of correlations between the rates for the alpha, beta-minus, beta-plus, and electron-capture decays of 22Na, 44Ti, 108Agm, 121Snm, 133Ba, and 241Am and the Earth-Sun distance. We find no evidence for such correlations and set limits on the possible amplitudes of such correlations substantially smaller than those observed in previous experiments

    Shifts in biomass and productivity for a subtropical dry forest in response to simulated elevated hurricane disturbances

    Get PDF
    Caribbean tropical forests are subject to hurricane disturbances of great variability. In addition to natural storm incongruity, climate change can alter storm formation, duration, frequency, and intensity. This model-based investigation assessed the impacts of multiple storms of different intensities and occurrence frequencies on the long-term dynamics of subtropical dry forests in Puerto Rico. Using the previously validated individual-based gap model ZELIG-TROP, we developed a new hurricane damage routine and parameterized it with site- and species-specific hurricane effects. A baseline case with the reconstructed historical hurricane regime represented the control condition. Ten treatment cases, reflecting plausible shifts in hurricane regimes, manipulated both hurricane return time (i.e. frequency) and hurricane intensity. The treatment-related change in carbon storage and fluxes were reported as changes in aboveground forest biomass (AGB), net primary productivity (NPP), and in the aboveground carbon partitioning components, or annual carbon accumulation (ACA). Increasing the frequency of hurricanes decreased aboveground biomass by between 5% and 39%, and increased NPP between 32% and 50%. Decadal-scale biomass fluctuations were damped relative to the control. In contrast, increasing hurricane intensity did not create a large shift in the long-term average forest structure, NPP, or ACA from that of historical hurricane regimes, but produced large fluctuations in biomass. Decreasing both the hurricane intensity and frequency by 50% produced the highest values of biomass and NPP. For the control scenario and with increased hurricane intensity, ACA was negative, which indicated that the aboveground forest components acted as a carbon source. However, with an increase in the frequency of storms or decreased storms, the total ACA was positive due to shifts in leaf production, annual litterfall, and coarse woody debris inputs, indicating a carbon sink into the forest over the long-term. The carbon loss from each hurricane event, in all scenarios, always recovered over sufficient time. Our results suggest that subtropical dry forests will remain resilient to hurricane disturbance. However carbon stocks will decrease if future climates increase hurricane frequency by 50% or more

    A METHOD OF MODELING SOURCE AREA RESPONSE TO CLIMATE VARIABILITY

    Get PDF
    ABSTRACT: A modeling framework for understanding spatially-explicit relationships between soil moisture dynamics and streamflow generation in upland humid forested watersheds is described. The framework consists of a dynamic canopy interception module and a 2D finite element hillslope hydrology model (IHDM4) having hillslope planes objectively delineated using contour-based terrain analysis (TAPES-C). This approach is fine-scaled both in space and time allowing for the inclusion of topographic and soil heterogeneities necessary for mapping oscillations in the variable source areas of streamflow generation. The modeling framework is implemented for a small control watershed (WS2) at the Coweeta Hydrologic Laboratory. Simulation results to be presented at the conference include the climate-scale response of variable source areas for hillslope cross-sections to hourly climate data spanning years in which total precipitation was: (a) >20% above average, (b) near average, (c) >20% below average

    Importance of Tree-and Species-Level Interactions with Wildfire, Climate, and Soils in Interior Alaska: Implications for Forest Change Under a Warming Climate

    Get PDF
    The boreal zone of Alaska is dominated by interactions between disturbances, vegetation, and soils. These interactions are likely to change in the future through increasing permafrost thaw, more frequent and intense wildfires, and vegetation change from drought and competition. We utilize an individual tree-based vegetation model, the University of Virginia Forest Model Enhanced (UVAFME), to estimate current and future forest conditions across sites within interior Alaska. We updated UVAFME for application within interior Alaska, including improved simulation of permafrost dynamics, litter decay, nutrient dynamics, fire mortality, and postfire regrowth. Following these updates, UVAFME output on species-specific biomass and stem density was comparable to inventory measurements at various forest types within interior Alaska. We then simulated forest response to climate change at specific inventory locations and across the Tanana Valley River Basin on a 2 × 2 km2 grid. We derived projected temperature and precipitation from a five-model average taken from the CMIP5 archive under the RCP 4.5 and 8.5 scenarios. Results suggest that climate change and the concomitant impacts on wildfire and permafrost dynamics will result in overall decreases in biomass (particularly for spruce (Picea spp.)) within the interior Tanana Valley, despite increases in quaking aspen (Populus tremuloides) biomass, and a resulting shift towards higher deciduous fraction. Simulation results also predict increases in biomass at cold, wet locations and at high elevations, and decreases in biomass in dry locations, under both moderate (RCP 4.5) and extreme (RCP 8.5) climate change scenarios. These simulations demonstrate that a highly detailed, species interactive model can be used across a large region within Alaska to investigate interactions between vegetation, climate, wildfire, and permafrost. The vegetation changes predicted here have the capacity to feed back to broader scale climate-forest interactions in the North American boreal forest, a region which contributes significantly to the global carbon and energy budgets
    corecore