11 research outputs found

    Characterization of Adenocarcinoma\u27s Autofluorescence Properties Using Multiexcitation Analysis Method

    Full text link
    General purpose of this research is to get an early cancer detection method based on the properties of optical analysis between normal and adenocarsinoma tissue using the multiexcitation autofluorescence method. Observation of autofluorescence properties was done on the biopsy sample of adenocarcinoma tissues, GR mice transplanted by adenocarsinoma, and cell culture SM 1. Excitation on tissue was done by using  the lamp Light Emitting Diode (LED) at some visible light wavelength range. This research obtained that the value of Intensity Auto fluorescence (IAF) at range red wavelength of cells and adenocarsinoma tissues tend to lower compared to the cells normal tissues if its were excited by blue LED. On the contrary, the value of IAF at infra red wavelength from cells and carcinoma tissues tend to higher compared to the cells and normal tissues if its were excited by red LED

    Additional file 10: Figure S7. of miR-19a promotes colorectal cancer proliferation and migration by targeting TIA1

    No full text
    The efficiency of miR-19a lentivirus and TIA1 vector on TIA1 protein level and SW480 proliferation. (A) Quantitative RT-PCR analysis of miR-19a levels in SW480 cells, which were infected with a control lentivirus or a lentivirus to overexpress miR-19a. (B and C) Western blot analysis of TIA1 protein levels in SW480 cells, which were infected with a control lentivirus or a lentivirus to overexpress miR-19a. B: representative images; C: quantitative analysis. (D-F) miR-19a could promote SW480 cell proliferation by targeting TIA1 in vitro. D representative images of Ki67 immunofluorescence; E: quantitative analysis of Ki67 immunofluorescence; F: representative images of formed SW480 colonies. (G) Quantitative RT-PCR analysis of miR-19a levels in tumors from implanted mice. (H and I) Western blot analysis of TIA1 protein levels in tumors from implanted mice. H: representative images; I: quantitative analysis. **P < 0.01; ***P < 0.001. (TIF 3290 kb

    Additional file 5: Figure S3. of The Jun/miR-22/HuR regulatory axis contributes to tumourigenesis in colorectal cancer

    No full text
    HuR functions as an oncogene in CRC. (a-c) HuR promoted SW480 proliferation. a: CCK-8 assays; b and c: EdU assays. (d and e) HuR promoted SW480 migration. (f-h) HuR accelerated CRC xenografted tumour growth. f: Photos of CRC tumours; g: Tumour volume curves; h: Tumour weights. (i) Western blot analysis of HuR levels in CRC xenografted tumours. (j and k) HE staining and IHC staining for HuR and Ki-67 in xenografted tumours. **P < 0.01; ***P < 0.001. (TIFF 5991 kb

    Additional file 3: Figure S1. of The Jun/miR-22/HuR regulatory axis contributes to tumourigenesis in colorectal cancer

    No full text
    HuR protein is significantly upregulated in CRC tissues and negatively correlated with CRC patient survival. (a) HuR levels in normal colon, normal rectum, colon adenocarcinoma and rectal adenocarcinoma in the TCGA dataset analysed by Oncomine. (b) Kaplan-Meier curve showing the negative correlation of HuR level and CRC patients’ survival. (TIFF 167 kb
    corecore