103 research outputs found

    Verification and Synthesis of Robust Control Barrier Functions: Multilevel Polynomial Optimization and Semidefinite Relaxation

    Full text link
    We study the problem of verification and synthesis of robust control barrier functions (CBF) for control-affine polynomial systems with bounded additive uncertainty and convex polynomial constraints on the control. We first formulate robust CBF verification and synthesis as multilevel polynomial optimization problems (POP), where verification optimizes -- in three levels -- the uncertainty, control, and state, while synthesis additionally optimizes the parameter of a chosen parametric CBF candidate. We then show that, by invoking the KKT conditions of the inner optimizations over uncertainty and control, the verification problem can be simplified as a single-level POP and the synthesis problem reduces to a min-max POP. This reduction leads to multilevel semidefinite relaxations. For the verification problem, we apply Lasserre's hierarchy of moment relaxations. For the synthesis problem, we draw connections to existing relaxation techniques for robust min-max POP, which first use sum-of-squares programming to find increasingly tight polynomial lower bounds to the unknown value function of the verification POP, and then call Lasserre's hierarchy again to maximize the lower bounds. Both semidefinite relaxations guarantee asymptotic global convergence to optimality. We provide an in-depth study of our framework on the controlled Van der Pol Oscillator, both with and without additive uncertainty.Comment: Accepted to IEEE Conference on Decision and Control (CDC) 202

    Graph Neural Networks for Natural Language Processing: A Survey

    Full text link
    Deep learning has become the dominant approach in coping with various tasks in Natural LanguageProcessing (NLP). Although text inputs are typically represented as a sequence of tokens, there isa rich variety of NLP problems that can be best expressed with a graph structure. As a result, thereis a surge of interests in developing new deep learning techniques on graphs for a large numberof NLP tasks. In this survey, we present a comprehensive overview onGraph Neural Networks(GNNs) for Natural Language Processing. We propose a new taxonomy of GNNs for NLP, whichsystematically organizes existing research of GNNs for NLP along three axes: graph construction,graph representation learning, and graph based encoder-decoder models. We further introducea large number of NLP applications that are exploiting the power of GNNs and summarize thecorresponding benchmark datasets, evaluation metrics, and open-source codes. Finally, we discussvarious outstanding challenges for making the full use of GNNs for NLP as well as future researchdirections. To the best of our knowledge, this is the first comprehensive overview of Graph NeuralNetworks for Natural Language Processing.Comment: 127 page

    Thermal Hall effect in insulating quantum materials

    Get PDF
    The emerging ïŹeld of quantum materials involves an exciting new class of materials in which charge, spin, orbital, and lattice degrees of freedom are inter- twined, exhibiting a plethora of exotic physical properties. Quantum materials include, but are not limited to, superconductors, topological quantum matter, and systems with frustrated spins, which enable a wide range of potential applications in biomedicine, energy transport and conversion, quantum sensing, and quantum information processing.S.G. and X.C. acknowledge the support from National Science Foundation under grant No. 2144328. J.Z. acknowledges the support from National Science Foundation through the Center for Dynamics and Control of Materials: an NSF MRSEC unnder Cooperative Agreement No. DMR-1720595.Center for Dynamics and Control of Material

    The involvement of the phenylpropanoid and jasmonate pathways in methyl jasmonate-induced soft rot resistance in kiwifruit (Actinidia chinensis)

    Get PDF
    Botryosphaeria dothidea is a major postharvest causal agent of soft rot in kiwifruit. Methyl jasmonate (MeJA) is an important plant hormone that participates as a plant defense against pathogens from a signal molecule. However, the impact and regulatory mechanism of MeJA on the attenuation of kiwifruit fungal decay remains unknown. This work investigated the effects of exogenous MeJA on the enzyme activity, metabolite content and gene expression of the phenylpropanoid and jasmonate pathways in kiwifruit. The results revealed that MeJA inhibited the expansion of B. dothidea lesion diameter in kiwifruit (Actinidia chinensis cv. ‘Hongyang’), enhanced the activity of enzymes (phenylalanine ammonia lyase, cinnamate 4-hydroxylase, 4-coumarate: coenzyme A ligase, cinnamyl alcohol dehydrogenase, peroxidase and polyphenol oxidase), and upregulated the expression of related genes (AcPAL, AcC4H, Ac4CL, and AcCAD). The accumulation of metabolites (total phenolics, flavonoids, chlorogenic acid, caffeic acid and lignin) with inhibitory effects on pathogens was promoted. Moreover, MeJA enhanced the expression of AcLOX, AcAOS, AcAOC, AcOPR3, AcJAR1, AcCOI1 and AcMYC2 and reduced the expression of AcJAZ. These results suggest that MeJA could display a better performance in enhancing the resistance of disease in kiwifruit by regulating the phenylpropanoid pathway and jasmonate pathway

    Molecular and morphological evidence support a new species of Rosaceae Prunus subg. Cerasus from Wuyishan National Park, southeast China

    Get PDF
    Prunus tongmuensis, a new species of cherry blossom, is described and illustrated from Wuyishan National Park, southeast China. This species is characterized by its tubular to nearly bottle-shaped receptacles and dark purple drupes. It can be distinguished from other wild cherry trees by its flowers and leaves, reddish brown young leaves, presence of 1–2 glands at the base of leaves, petioles densely covered with yellowish brown villi, longer pedicels (0.6–2.5 cm), villous pistil, and dark purple drupes. In the present study, we conducted a comprehensive morphological study based on specimens of the new species and its morphologically close species, field observations, and examination of pollen morphology. In addition, our phylogenetic analysis based on the complete plastid genome sequences further confirms the status of the new species and indicates that it is closely related to Prunus clarofolia, however, it notably differs in leaf shape, size, petiole villus color, gland location, timing of flower and leaf openings, and reflexed or spread sepals, as well as drupe color
    • 

    corecore