787 research outputs found

    On the power of homogeneous depth 4 arithmetic circuits

    Full text link
    We prove exponential lower bounds on the size of homogeneous depth 4 arithmetic circuits computing an explicit polynomial in VPVP. Our results hold for the {\it Iterated Matrix Multiplication} polynomial - in particular we show that any homogeneous depth 4 circuit computing the (1,1)(1,1) entry in the product of nn generic matrices of dimension nO(1)n^{O(1)} must have size nΩ(n)n^{\Omega(\sqrt{n})}. Our results strengthen previous works in two significant ways. Our lower bounds hold for a polynomial in VPVP. Prior to our work, Kayal et al [KLSS14] proved an exponential lower bound for homogeneous depth 4 circuits (over fields of characteristic zero) computing a poly in VNPVNP. The best known lower bounds for a depth 4 homogeneous circuit computing a poly in VPVP was the bound of nΩ(logn)n^{\Omega(\log n)} by [LSS, KLSS14].Our exponential lower bounds also give the first exponential separation between general arithmetic circuits and homogeneous depth 4 arithmetic circuits. In particular they imply that the depth reduction results of Koiran [Koi12] and Tavenas [Tav13] are tight even for reductions to general homogeneous depth 4 circuits (without the restriction of bounded bottom fanin). Our lower bound holds over all fields. The lower bound of [KLSS14] worked only over fields of characteristic zero. Prior to our work, the best lower bound for homogeneous depth 4 circuits over fields of positive characteristic was nΩ(logn)n^{\Omega(\log n)} [LSS, KLSS14]

    Sums of products of polynomials in few variables : lower bounds and polynomial identity testing

    Get PDF
    We study the complexity of representing polynomials as a sum of products of polynomials in few variables. More precisely, we study representations of the form P=i=1Tj=1dQijP = \sum_{i = 1}^T \prod_{j = 1}^d Q_{ij} such that each QijQ_{ij} is an arbitrary polynomial that depends on at most ss variables. We prove the following results. 1. Over fields of characteristic zero, for every constant μ\mu such that 0μ<10 \leq \mu < 1, we give an explicit family of polynomials {PN}\{P_{N}\}, where PNP_{N} is of degree nn in N=nO(1)N = n^{O(1)} variables, such that any representation of the above type for PNP_{N} with s=Nμs = N^{\mu} requires TdnΩ(n)Td \geq n^{\Omega(\sqrt{n})}. This strengthens a recent result of Kayal and Saha [KS14a] which showed similar lower bounds for the model of sums of products of linear forms in few variables. It is known that any asymptotic improvement in the exponent of the lower bounds (even for s=ns = \sqrt{n}) would separate VP and VNP[KS14a]. 2. We obtain a deterministic subexponential time blackbox polynomial identity testing (PIT) algorithm for circuits computed by the above model when TT and the individual degree of each variable in PP are at most logO(1)N\log^{O(1)} N and sNμs \leq N^{\mu} for any constant μ<1/2\mu < 1/2. We get quasipolynomial running time when s<logO(1)Ns < \log^{O(1)} N. The PIT algorithm is obtained by combining our lower bounds with the hardness-randomness tradeoffs developed in [DSY09, KI04]. To the best of our knowledge, this is the first nontrivial PIT algorithm for this model (even for the case s=2s=2), and the first nontrivial PIT algorithm obtained from lower bounds for small depth circuits

    Deterministic Factorization of Sparse Polynomials with Bounded Individual Degree

    Full text link
    In this paper we study the problem of deterministic factorization of sparse polynomials. We show that if fF[x1,x2,,xn]f \in \mathbb{F}[x_{1},x_{2},\ldots ,x_{n}] is a polynomial with ss monomials, with individual degrees of its variables bounded by dd, then ff can be deterministically factored in time spoly(d)logns^{\mathrm{poly}(d) \log n}. Prior to our work, the only efficient factoring algorithms known for this class of polynomials were randomized, and other than for the cases of d=1d=1 and d=2d=2, only exponential time deterministic factoring algorithms were known. A crucial ingredient in our proof is a quasi-polynomial sparsity bound for factors of sparse polynomials of bounded individual degree. In particular we show if ff is an ss-sparse polynomial in nn variables, with individual degrees of its variables bounded by dd, then the sparsity of each factor of ff is bounded by sO(d2logn)s^{O({d^2\log{n}})}. This is the first nontrivial bound on factor sparsity for d>2d>2. Our sparsity bound uses techniques from convex geometry, such as the theory of Newton polytopes and an approximate version of the classical Carath\'eodory's Theorem. Our work addresses and partially answers a question of von zur Gathen and Kaltofen (JCSS 1985) who asked whether a quasi-polynomial bound holds for the sparsity of factors of sparse polynomials

    Improved rank bounds for design matrices and a new proof of Kelly's theorem

    Full text link
    We study the rank of complex sparse matrices in which the supports of different columns have small intersections. The rank of these matrices, called design matrices, was the focus of a recent work by Barak et. al. (BDWY11) in which they were used to answer questions regarding point configurations. In this work we derive near-optimal rank bounds for these matrices and use them to obtain asymptotically tight bounds in many of the geometric applications. As a consequence of our improved analysis, we also obtain a new, linear algebraic, proof of Kelly's theorem, which is the complex analog of the Sylvester-Gallai theorem
    corecore