8 research outputs found
Study on Distribution Characteristics of Damage Range along Smooth Blasting Hole Based on PPV
The damage range of surrounding rock has an important influence on optimization of blasting parameters. This study, based on the vibration attenuation law near the blasting source and the characteristics of the load acting on the wall of the smooth blasting hole, derives the distribution formulas of the damage range along the borehole during the expansion and quasistatic processes of detonation gas, respectively. More importantly, the quantitative relationship between the damage range and the charge weight of the single borehole is established. The experimental data are used to verify the correctness of the theoretical formulas. The results show that the damage range during the expansion process of detonation gas presents a continuous saddle-shaped distribution along the borehole and the maximum damage range is near the charge segment. The damage range during the quasistatic process of detonation gas is uniformly distributed along the borehole and can be more conservatively used to the practical prediction after corrected. The theoretical formulas are applicable to the perimeter hole with the radial and axial decoupled charge structure, which can provide a theoretical support for controlling the damage range of surrounding rock according to the charge weight
Theoretical Study on Radial Distribution Laws of Rock Mass Damage Factors under Decoupled Charge Blasting
In this paper, the radial distribution laws of damage factors under decoupled charge blasting are studied for the optimization design of blasting parameters. Through defining the critical radial decoupling coefficient, the damage zone around the borehole is partitioned and the characteristics are described. Based on the damage factor defined by Taylor’s effective elastic modulus, the formulas of the radial distribution laws of damage factors are derived by the attenuation law of stress wave and the theory of thick-walled cylinder, respectively, which are then superposed to obtain the formula under the combined action of explosion stress wave and quasistatic gas. Experimental verification indicates that the theoretical values, which have a good correlation with the test data and are of high accuracy, can characterize the radial distribution laws of damage factors and estimate the damage range. When a radial decoupling coefficient is less than the critical value, the attenuation rate of damage factors firstly increases and then decreases with the increase of distance, and a serious damage zone is caused. Conversely, it decreases gradually, and the serious damage zone is not caused. Therefore, on the premise of stable detonation, it is necessary to apply an appropriate radial decoupling coefficient which is larger than the critical value to smooth or presplit blasting
Environmental Efficiency Evaluation of China’s Power Industry Based on the Two-Stage Network Slack-Based Measure Model
How to achieve the continuous improvement of the environmental performance level of the power industry within the requirements of clean and low-carbon energy development is the fundamental requirement and inevitable choice for the construction of ecological civilization and sustainable development. From the perspective of environmental protection, based on the Data Envelopment Analysis (DEA) method and the internal mechanism of power system production and supply, the power industry environmental efficiency evaluation index system was constructed, and the two-stage Network Slack-based Measure (NSBM) model considering undesired output was used to calculate China’s 30 provinces and municipalities from 1998 to 2019. The environmental efficiency is divided into two links: power generation efficiency and transmission and distribution efficiency. The study found that, within the research interval, the overall environmental efficiency of China’s 30 provinces is low, and the differences between provinces and cities are large, but they have gradually developed in a better direction after 2015. The power generation efficiency of the first link in most provinces and municipalities is higher than the transmission and distribution efficiency of the second link, and the low transmission and distribution efficiency is an important reason for the low comprehensive level of environmental efficiency. The overall evolution trend of environmental efficiency in the six regions of China is roughly the same, but the regional differences are obvious, showing a trend of “high in the southeast and low in the northwest”. The economic and natural resource differences in different provinces and cities in each region have led to varying degrees of redundancy in five aspects, including investment in power assets, installed power generation capacity, and length of transmission lines, which seriously affect the environmental efficiency of the power industry. This research attempts to open the “black box” of the environmental efficiency conversion process of the power industry, which can provide directions and strategic suggestions for the improvement of the efficiency of the power industry in China
Oleic acid/oleylamine ligand pair: a versatile combination in the synthesis of colloidal nanoparticles
A variety of colloidal chemical approaches has been developed in the last few decades for the controlled synthesis of nanostructured materials in either water or organic solvents. Besides the precursors, the solvents, reducing agents, and the choice of surfactants are crucial for tuning the composition, morphology and other properties of the resulting nanoparticles. The ligands employed include thiols, amines, carboxylic acids, phosphines and phosphine oxides. Generally, adding a single ligand to the reaction mixture is not always adequate to yield the desired features. In this review, we discuss in detail the role of the oleic acid/oleylamine ligand pair in the chemical synthesis of nanoparticles. The combined use of these ligands belonging to two different categories of molecules aims to control the size and shape of nanoparticles and prevent their aggregation, not only during their synthesis but also after their dispersion in a carrier solvent. We show how the different binding strengths of these two molecules and their distinct binding modes on specific facets affect the reaction kinetics toward the production of nanostructures with tailored characteristics. Additional functions, such as the reducing function, are also noted, especially for oleylamine. Sometimes, the carboxylic acid will react with the alkylamine to form an acid-base complex, which may serve as a binary capping agent and reductant; however, its reducing capacity may range from lower to much lower than that of oleylamine. The types of nanoparticles synthesized in the simultaneous presence of oleic acid and oleylamine and discussed herein include metal oxides, metal chalcogenides, metals, bimetallic structures, perovskites, upconversion particles and rare earth-based materials. Diverse morphologies, ranging from spherical nanoparticles to anisotropic, core-shell and hetero-structured configurations are presented. Finally, the relation between tuning the resulting surface and volume nanoparticle properties and the relevant applications is highlighted
Engineering the ribosomal DNA in a megabase synthetic chromosome
We designed and synthesized a 976,067-base pair linear chromosome, synXII, based on native chromosome XII in Saccharomyces cerevisiae. SynXII was assembled using a twostep method, specified by successive megachunk integration and meiotic recombinationmediated assembly, producing a functional chromosome in S. cerevisiae. Minor growth defect " bugs" detected in synXII, caused by deletion of tRNA genes, were rescued by introducing an ectopic copy of a single tRNA gene. The ribosomal gene cluster (rDNA) on synXII was left intact during the assembly process and subsequently replaced by a modified rDNA unit used to regenerate rDNA at three distinct chromosomal locations. The signature sequences within rDNA, which can be used to determine species identity, were swapped to generate a Saccharomyces synXII strain that would be identified as Saccharomyces bayanus by standard DNA barcoding procedures.National Natural Science Foundation of China [31471254, 21621004, 21390203]; Chinese Ministry of Science and Technology [2012CB725201, 2012AA02A708]; Ph.D. Programs Foundation of Ministry of Education of China [20110002120055]; Research Fund for the Doctoral Program of Higher Education of China [20120002110022]; Tsinghua University Initiative grant [2011Z02296]; NSF [MCB-1026068, MCB-1158201, MCB-1445545]SCI(E)ARTICLE6329,SI35