275 research outputs found

    Tacholess order tracking method for gearbox based on time-varying filter and energy centrobaric correction method

    Get PDF
    Under the premise that the instantaneous speed can be accurately measured or precise estimated, order tracking is considered to be a classical and effective technique for non-stationary vibration analysis of rotating machinery. The meshing frequency components of the vibration signal measured from complex gearbox system interfere with each other mutually. The energy centrobaric correction method exhibits exact instantaneous frequency estimation (IFE) ability under the interference, but is susceptible to strong noise. Combining with time-varying filter and energy centrobaric correction method, a tacholess order tracking technique for gear fault diagnosis under the rotating frequency multi-linear fluctuation is proposed. The time-varying filter is designed to filter the strong noise signal, and then IFE could be accurately calculated from the filtered signal by energy centrobaric correction method. The instantaneous phase of reference shaft based on the Vold-Kalman filter (VKF) is used for angular resampling of the original vibration signal. The results show that the shaft rotating speed could be accurately identified from extracted gear meshing components. The order spectrum obtained by the proposed method with tacholess is substantially the same as the order spectrum obtained by a tachometer. Simulation analysis and experimental results verify the advantages of proposed tacholess order tracking technology for monitoring and fault diagnosis of gearbox vibration under the condition of strong noise and large speed variation

    EEMD-Based cICA method for single-channel signal separation and fault feature extraction of gearbox

    Get PDF
    This paper proposes a novel fault feature extraction method with the aim of extracting the fault feature submerged in the single-channel observation signal. The proposed method integrates the strengths of the constrained independent component analysis (cICA) extracting only the signals of interest (SOIs) with the advantage of ensemble empirical mode decomposition (EEMD) alleviating the mode mixing. The method, which is named EEMD-based cICA, not only enables gear fault feature extraction but also offers a new independent component analysis (ICA) mixing model with source noise and measured noise for the single-channel observation signal. The efficiency of the proposed method is tested on simulated as well as real-world vibration signals acquired from a multi-stage gearbox with a missing tooth and a chipped tooth, respectively

    The active oxygen species promoted catalytic oxidation of 5-hydroxymethyl-2-furfural on facet-specific Pt nanocrystals

    Get PDF
    This work was supported by Natural Science Foundation of Tianjin (Grant No. 17JCYBJC22600) and the Fundamental Research Funds for the Central Universities.The aerobic oxidation of alcohols and aldehydes over noble metal catalysts is a critical reaction for the catalytic conversion of carbohydrates into value-added chemicals from biomass. However, to fully understand the reaction mechanism, in particular the role of O2 and the generated active oxygen species in these reactions is still a challenging target. In the present work, the sub-10 nm Pt nanocrystals with cubic (Pt-NCs), octahedral (Pt-NOs) and spherical (Pt-NSs) morphologies were synthesized and used as catalysts in aerobic oxidation of HMF. Through experimental and computational investigations, the facet-dependent O2 conversion pathway and catalytic oxidation performance were discussed. The molecular O2 tends to be dissoci-ated to generate •OH on Pt(100) surface, but prefers to be reduced to •O2- on Pt(111) surface. Moreover, Pt-NCs enclosed by the {100} facets exhibited significantly enhanced catalytic activity than Pt-NOs enclosed by the {111} facets and Pt-NSs, in particular for alcohol oxidation step. Based on the experimental data and density functional theory (DFT) calculations, an active oxygen species promoted dehydrogenation mechanism for aerobic oxidation of HMF was proposed. The dehydrogena-tion of alcohol group is more favourable on the Pt(100) surface with an assistance of •OH, which are the dominant active oxygen species on the Pt(100) surface. We anticipate that this work would provide a new insight into the role of active oxy-gen species in aerobic oxidation of alcohols and aldehydes over noble metal catalysts.PostprintPeer reviewe

    Effect of oxygen coordination environment of Ca-Mn oxides on catalytic performance of Pd supported catalysts for aerobic oxidation of 5-hydroxymethyl-2-furfural

    Get PDF
    This work was supported by Natural Science Foundation of Tianjin (Grant No. 17JCYBJC22600) and the Fundamental Research Funds for the Central Universities. Computational support was provided by the Beijing Computing Center (BCC).Four types of Ca-Mn oxides, including CaMnO3, CaMn2O4, CaMn3O6 and Ca2Mn3O8, have been prepared and used as supports for Pd nanoparticles. The oxygen activation capacity of these oxides and the catalytic activity of the oxide supported Pd nanocatalysts have been investigated using the aerobic oxidation of 5-hydroxymethyl-2-furfural as a model reaction. It is found that the local coordination environment of lattice oxygen sites plays a crucial role on their redox property and charge transfer ability from Pd nanoparticles to the support. In particular, the Ca-Mn oxide with lower oxygen coordination number, weaker metal-oxygen bonds and tunnel crystal structure, e.g. CaMn2O4, exhibits promoted oxygen activation capacity, and stronger electron transfer ability. Consequently, Pd/CaMn2O4 exhibits the highest catalytic activity among these catalysts, providing a promising yield of 2,5-furandicarboxylic acid. This work may shed light on the future investigation on the design of local structure of active oxygen sites in oxides or oxide supported catalysts for redox reactions.PostprintPeer reviewe

    MADS-Box Genes and Gibberellins Regulate Bolting in Lettuce (Lactuca sativa L.)

    Get PDF
    Bolting in lettuce is promoted by high temperature and bolting resistance is of great economic importance for lettuce production. But how bolting is regulated at the molecular level remains elusive. Here, a bolting resistant line S24 and a bolting sensitive line S39 were selected for morphological, physiological, transcriptomic and proteomic comparisons. A total of 12204 genes were differentially expressed in S39 vs S24. Line S39 was featured with larger leaves, higher levels of chlorophyll, soluble sugar, anthocyanin and auxin, consistent with its up-regulation of genes implicated in photosynthesis, oxidation-reduction and auxin actions. Proteomic analysis identified 30 differentially accumulated proteins in lines S39 and S24 upon heat treatment, and 19 out of the 30 genes showed differential expression in the RNA-Seq data. Exogenous gibberellins (GA) treatment promoted bolting in both S39 and S24, while 12 flowering promoting MADS-box genes were specifically induced in line S39, suggesting that although GA regulates bolting in lettuce, it may be the MADS-box genes, not GA, that plays a major role in differing the bolting resistance between these two lettuce lines

    Large Chinese land carbon sink estimated from atmospheric carbon dioxide data

    Get PDF
    Limiting the rise in global mean temperatures relies on reducing carbon dioxide (CO2) emissions and on the removal of CO2 by land carbon sinks. China is currently the single largest emitter of CO2, responsible for approximately 27 per cent (2.67 petagrams of carbon per year) of global fossil fuel emissions in 20171. Understanding of Chinese land biosphere fluxes has been hampered by sparse data coverage2–4, which has resulted in a wide range of a posteriori estimates of flux. Here we present recently available data on the atmospheric mole fraction of CO2, measured from six sites across China during 2009 to 2016. Using these data, we estimate a mean Chinese land biosphere sink of −1.11 ± 0.38 petagrams of carbon per year during 2010 to 2016, equivalent to about 45 per cent of our estimate of annual Chinese anthropogenic emissions over that period. Our estimate reflects a previously underestimated land carbon sink over southwest China (Yunnan, Guizhou and Guangxi provinces) throughout the year, and over northeast China (especially Heilongjiang and Jilin provinces) during summer months. These provinces have established a pattern of rapid afforestation of progressively larger regions5,6, with provincial forest areas increasing by between 0.04 million and 0.44 million hectares per year over the past 10 to 15 years. These large-scale changes reflect the expansion of fast-growing plantation forests that contribute to timber exports and the domestic production of paper7. Space-borne observations of vegetation greenness show a large increase with time over this study period, supporting the timing and increase in the land carbon sink over these afforestation regions

    Covalently immobilized lipase on a thermoresponsive polymer with an upper critical solution temperature as an efficient and recyclable asymmetric catalyst in aqueous media

    Get PDF
    This work was financially supported by the National Natural Science Foundation of China (Grant No. 21203102), the Tianjin Municipal Natural Science Foundation (Grant No. 14JCQNJC06000), China Scholarship Council (Grant No. 201606200087), MOE (IRT13R30) and 111 Project (B12015).A thermoresponsive lipase catalyst with an upper critical solution temperature (UCST) of about 26 °C was exploited by covalent immobilization of an enzyme, Pseudomonas cepacia lipase (PSL), onto poly(acrylamide-co-acrylonitrile) via glutaraldehyde coupling. The experimental conditions for the PSL immobilization were optimized. The immobilized PSL was much more stable for wide ranges of temperature and pH than the free PSL. The material was also evaluated as an asymmetric catalyst in the kinetic resolution of racemic α-methylbenzyl butyrate at 55 °C in an aqueous medium and exhibited high catalytic performance and stability. Up to 50% conversion and 99.5% product enantiomeric excess were achieved, thus providing highly pure enantiomers. More importantly, this biocatalyst could be easily recovered by simple decantation for reuse based on temperature-induced precipitation. It showed good reusability and retained 80.5% of its original activity with a well reserved enantioselectivity in the 6th cycle. This work would shed light on the future development of new UCST-type enzyme catalysts.PostprintPeer reviewe

    M3+O(-Mn4+)2 clusters in doped MnOx catalysts as promoted active sites for aerobic oxidation of 5-hydroxymethylfurfural

    Get PDF
    This work was supported by Tianjin Municipal Natural Science Foundation (No. 17JCYBJC22600), China Scholarship Council (No. 201606200096), and the Fundamental Research Funds for the Central Universities. Computational support was provided by the Beijing Computing Center (BCC).Based on various experimental results, M3+O(-Mn4+)2 clusters in (Fe, Co, Ni)-doped MnOx catalysts were identified as principal active sites for aerobic oxidation of 5-hydroxymethylfurfural due to their special property that makes oxygen to be easy come, easy go.PostprintPeer reviewe
    corecore