27 research outputs found

    Comparative Genomics of Multiple Strains of Pseudomonas cannabina pv. alisalensis, a Potential Model Pathogen of Both Monocots and Dicots

    Get PDF
    Comparative genomics of closely related pathogens that differ in host range can provide insights into mechanisms of host-pathogen interactions and host adaptation. Furthermore, sequencing of multiple strains with the same host range reveals information concerning pathogen diversity and the molecular basis of virulence. Here we present a comparative analysis of draft genome sequences for four strains of Pseudomonas cannabina pathovar alisalensis (Pcal), which is pathogenic on a range of monocotyledonous and dicotyledonous plants. These draft genome sequences provide a foundation for understanding host range evolution across the monocot-dicot divide. Like other phytopathogenic pseudomonads, Pcal strains harboured a hrp/hrc gene cluster that codes for a type III secretion system. Phylogenetic analysis based on the hrp/hrc cluster genes/proteins, suggests localized recombination and functional divergence within the hrp/hrc cluster. Despite significant conservation of overall genetic content across Pcal genomes, comparison of type III effector repertoires reinforced previous molecular data suggesting the existence of two distinct lineages within this pathovar. Furthermore, all Pcal strains analyzed harbored two distinct genomic islands predicted to code for type VI secretion systems (T6SSs). While one of these systems was orthologous to known P. syringae T6SSs, the other more closely resembled a T6SS found within P. aeruginosa. In summary, our study provides a foundation to unravel Pcal adaptation to both monocot and dicot hosts and provides genetic insights into the mechanisms underlying pathogenicity

    The Plant Pathogen Pseudomonas syringae pv. tomato Is Genetically Monomorphic and under Strong Selection to Evade Tomato Immunity

    Get PDF
    Recently, genome sequencing of many isolates of genetically monomorphic bacterial human pathogens has given new insights into pathogen microevolution and phylogeography. Here, we report a genome-based micro-evolutionary study of a bacterial plant pathogen, Pseudomonas syringae pv. tomato. Only 267 mutations were identified between five sequenced isolates in 3,543,009 nt of analyzed genome sequence, which suggests a recent evolutionary origin of this pathogen. Further analysis with genome-derived markers of 89 world-wide isolates showed that several genotypes exist in North America and in Europe indicating frequent pathogen movement between these world regions. Genome-derived markers and molecular analyses of key pathogen loci important for virulence and motility both suggest ongoing adaptation to the tomato host. A mutational hotspot was found in the type III-secreted effector gene hopM1. These mutations abolish the cell death triggering activity of the full-length protein indicating strong selection for loss of function of this effector, which was previously considered a virulence factor. Two non-synonymous mutations in the flagellin-encoding gene fliC allowed identifying a new microbe associated molecular pattern (MAMP) in a region distinct from the known MAMP flg22. Interestingly, the ancestral allele of this MAMP induces a stronger tomato immune response than the derived alleles. The ancestral allele has largely disappeared from today's Pto populations suggesting that flagellin-triggered immunity limits pathogen fitness even in highly virulent pathogens. An additional non-synonymous mutation was identified in flg22 in South American isolates. Therefore, MAMPs are more variable than expected differing even between otherwise almost identical isolates of the same pathogen strain

    Alternatives to vitamin B 1 uptake revealed with discovery of riboswitches in multiple marine eukaryotic lineages

    Get PDF
    Vitamin B 1 (thiamine pyrophosphate, TPP) is essential to all life but scarce in ocean surface waters. In many bacteria and a few eukaryotic groups thiamine biosynthesis genes are controlled by metabolite-sensing mRNA-based gene regulators known as riboswitches. Using available genome sequences and transcriptomes generated from ecologically important marine phytoplankton, we identified 31 new eukaryotic riboswitches. These were found in alveolate, cryptophyte, haptophyte and rhizarian phytoplankton as well as taxa from two lineages previously known to have riboswitches (green algae and stramenopiles). The predicted secondary structures bear hallmarks of TPP-sensing riboswitches. Surprisingly, most of the identified riboswitches are affiliated with genes of unknown function, rather than characterized thiamine biosynthesis genes. Using qPCR and growth experiments involving two prasinophyte algae, we show that expression of these genes increases significantly under vitamin B 1 -deplete conditions relative to controls. Pathway analyses show that several algae harboring the uncharacterized genes lack one or more enzymes in the known TPP biosynthesis pathway. We demonstrate that one such alga, the major primary producer Emiliania huxleyi, grows on 4-amino-5-hydroxymethyl-2-methylpyrimidine (a thiamine precursor moiety) alone, although long thought dependent on exogenous sources of thiamine. Thus, overall, we have identified riboswitches in major eukaryotic lineages not known to undergo this form of gene regulation. In these phytoplankton groups, riboswitches are often affiliated with widespread thiamine-responsive genes with as yet uncertain roles in TPP pathways. Further, taxa with 'incomplete' TPP biosynthesis pathways do not necessarily require exogenous vitamin B 1, making vitamin control of phytoplankton blooms more complex than the current paradigm suggests. Β© 2014 International Society for Microbial Ecology. All rights reserved

    Effects of Cerium on Weld Solidification Crack Sensitivity of 441 Ferritic Stainless Steel

    No full text
    The addition of rare earth element Ce in ferritic stainless steel can improve the high temperature performance to meet the service requirements of automobile exhaust systems at high temperatures. Automobile exhaust systems are generally applied as welded pipes, so it is necessary to study the effect of Ce on the weldability of ferritic stainless steel. In this study, the Trans-varestraint test method was used to test the solidification crack sensitivities of 441 and 441Ce ferritic stainless steel. The 441Ce steel, which has added Ce, showed poor resistance to weld solidification cracking. Using Thermo-Calc software, Ce was observed to expand the solidification temperature range of 441 ferritic stainless steel, increase the time for solid–liquid coexistence during solidification, and increase the sensitivity of solidification cracking. Further, from scanning electron microscopy and energy dispersive spectrometer analysis, the addition of Ce was found to reduce high temperature precipitation (Ti,Nb)(C,N), reduce or even eliminate the “pinning„ effect during solidification, and increase solidification crack sensitivity of 441 ferritic stainless steel

    Research Progress in Nanoparticle Inhibitors for Crude Oil Asphaltene Deposition

    No full text
    Currently, the alteration of external factors during crude oil extraction easily disrupts the thermodynamic equilibrium of asphaltene, resulting in the continuous flocculation and deposition of asphaltene molecules in crude oil. This accumulation within the pores of reservoir rocks obstructs the pore throat, hindering the efficient extraction of oil and gas, and consequently, affecting the recovery of oil and gas resources. Therefore, it is crucial to investigate the principles of asphaltene deposition inhibition and the synthesis of asphaltene inhibitors. In recent years, the development of nanotechnology has garnered significant attention due to its unique surface and volume effects. Nanoparticles possess a large specific surface area, high adsorption capacity, and excellent suspension and catalytic abilities, exhibiting unparalleled advantages compared with traditional organic asphaltene inhibitors, such as sodium dodecyl benzene sulfonate and salicylic acid. At present, there are three primary types of nanoparticle inhibitors: metal oxide nanoparticles, organic nanoparticles, and inorganic nonmetal nanoparticles. This paper reviews the recent advancements and application challenges of nanoparticle asphaltene deposition inhibition technology based on the mechanism of asphaltene deposition and nano-inhibitors. The aim was to provide insights for ongoing research in this field and to identify potential future research directions

    Naturally occurring nonpathogenic isolates of the plant pathogen species Pseudomonas syringae lack a type III secretion system and effector gene orthologues

    No full text
    Pseudomonas syringae causes plant diseases, and the main virulence mechanism is a type III secretion system (T3SS) that translocates dozens of effector proteins into plant cells. Here we report the existence of a subgroup of P. syringae isolates that do not cause disease on any plant species tested. This group is monophyletic and most likely evolved from a pathogenic P. syringae ancestor through loss of the T3SS. In the nonpathogenic isolate P. syringae 508 the genomic region that in pathogenic P. syringae strains contains the hrp-hrc cluster coding for the T3SS and flanking effector genes is absent. P. syringae 508 was also surveyed for the presence of effector orthologues from the closely related pathogenic strain P. syringae pv. syringae B728a, but none were detected. The absence of the hrp-hrc cluster and effector orthologues was confirmed for other nonpathogenic isolates. Using the AvrRpt2 effector as reporter revealed the inability of P. syringae 508 to translocate effectors into plant cells. Adding a plasmid-encoded T3SS and the P. syringae pv. syringae 61 effector gene hopA1 increased in planta growth almost 10-fold. This suggests that P. syringae 508 supplemented with a T3SS could be used to determine functions of individual effectors in the context of a plant infection, avoiding the confounding effect of other effectors with similar functions present in effector mutants of pathogenic isolate

    A new hybrid concentrated-winding concept with improved power factor for permanent magnet vernier machine

    No full text
    This paper investigates a high power-factor permanent magnet vernier machine (PMVM) equipped with low-coupling hybrid concentrated-winding (CW). The proposed hybrid-CW, carrying both star- and delta-winding sets, exhibits a good filtering property to both sub- and super-order harmonics. Through the meticulous design of the short coil pitch, the ratio of inductance to magnet flux linkage is decreased, leading to a great improvement in power factor. The proposed low-coupling winding design contributes to further power factor improvement by reducing the inductance while retaining the magnet flux linkage. It is revealed that the mutual coupling between different coils of single phase and that between different windings of three phases are suppressed significantly in the hybrid-CW, thus leading to high power factor and potentially high fault tolerance. Finite element results show that the proposed hybrid-CW PMVM exhibits a significantly improved power factor up to 0.96 from 0.83 and 0.75, as compared with two counterpart PMVMs with open-slot and split-tooth structures, respectively. Benefiting from the magnetic gearing effect, the proposed PMVM has a promising active torque density of 40 Nm/L. Taking end-winding volume into consideration, the proposed PMVM exhibits an actual torque density of 21.98 Nm/L, which is 22.52% and 52.43% higher than the investigated open-slot and split-tooth counterpart PMVMs. Finally, a prototype is fabricated and tested to validate the high-power-factor and high-torque-density features of the proposed hybrid-CW PMVM.National Research Foundation (NRF)Submitted/Accepted versionThis work was supported by the National Research Foundation (NRF) Singapore under its NRF fellowship Grant NRF-NRFF12-2020-0003

    Protective effects of butyrate on cerebral ischaemic injury in animal models: a systematic review and meta-analysis

    Get PDF
    IntroductionCerebral ischaemic stroke is a common disease that poses a serious threat to human health. Butyrate is an important metabolite of intestinal microorganisms. Recent studies have shown that butyrate has a significant protective effect in animal models of cerebral ischaemic injury.ObjectiveThe aim of this study was to evaluate the protective effect of butyrate on cerebral ischaemic stroke by meta-analysis, aiming to provide a scientific basis for the clinical application of butyrate in patients with cerebral ischaemia.Materials and methodsA systematic search was conducted for all relevant studies published before 23 January 2024, in PubMed, Web of Science, Cochrane Library, and Embase. Methodological quality was assessed using Syrcle’s risk of bias tool for animal studies. Data were analysed using Rev Man 5.3 software.ResultsA total of nine studies were included, and compared with controls, butyrate significantly increased BDNF levels in the brain (SMD = 2.33, 95%CI = [1.20, 3.47], p < 0.005) and P-Akt expression (SMD = 3.53, 95% CI = [0.97, 6.10], p < 0.05). Butyrate also decreased IL-Ξ² levels in the brain (SMD =β€‰βˆ’2.02, 95% CI = [βˆ’3.22, βˆ’0.81], p < 0.005), TNF-Ξ± levels (SMD =β€‰βˆ’0.86, 95% CI = [βˆ’1.60, βˆ’0.12], p < 0.05), and peripheral vascular IL-1Ξ² levels (SMD =β€‰βˆ’2.10, 95%CI = [βˆ’3.59, βˆ’0.61], p < 0.05). In addition, butyrate reduced cerebral infarct volume (MD =β€‰βˆ’11.29, 95%CI = [βˆ’17.03, βˆ’5.54], p < 0.05), mNSS score (MD =β€‰βˆ’2.86, 95%CI = [βˆ’4.12, βˆ’1.60], p < 0.005), foot fault score (MD =β€‰βˆ’7.59, 95%CI = [βˆ’9.83, βˆ’5, 35], p < 0.005), and Morris water maze time (SMD =β€‰βˆ’2.49, 95%CI = [βˆ’4.42, βˆ’0.55], p < 0.05).ConclusionThe results of this study indicate that butyrate has a protective effect on cerebral ischaemic stroke in animal models, and the mechanism is related to reducing inflammation and inhibiting apoptosis. It provides an evidence-based basis for the future clinical development of butyrate in the treatment of ischaemic stroke.Systematic Review Registrationhttps://www.crd.york.ac.uk/PROSPERO/, CRD42023482844
    corecore