2,494 research outputs found
In Utero Exposure to Dioxins and Polychlorinated Biphenyls and Its Relations to Thyroid Function and Growth Hormone in Newborns
The aim of this study is to examine the association between transplacental exposure to dioxins/polychlorinated biphenyls (PCBs) and thyroid and growth hormones in newborns. We recruited 118 pregnant women, between 25 and 34 years of age, at the obstetric clinic. Personal data collected included reproductive and medical histories and physical factors. Clinicians gathered placental and umbilical cord serum upon delivery and carefully scored the 118 newborns, making both structural and functional assessments. We analyzed placentas for 17 polychlorinated dibenzo-p-dioxins and dibenzofurans and 12 dioxin-like PCB congeners with the World Health Organization–defined toxic equivalent factors, and six indicator PCBs by high-resolution gas chromatography and high-resolution mass spectrometry. We analyzed thyroid and growth hormones from cord serum using radioimmunoassay. Insulin-like growth factor (IGF)-1, IGF-binding globulin-3, and thyroxine × yroid-stimulating hormone (T(4) × TSH) were significantly associated with increased placental weight and Quetelet index (in kilograms per square meter; correlation coefficient r = 0.2–0.3; p < 0.05). Multivariate analyses showed independently and significantly decreased free T(4) (FT(4)) × TSH with increasing non-ortho PCBs (r = −0.2; p < 0.05). We suggest that significant FT(4) feedback alterations to the hypothalamus result from in utero exposure to non-ortho PCBs. Considering the vast existence of bioaccumulated dioxins and PCBs and the resultant body burden in modern society, we suggest routine screening of both thyroid hormone levels and thyroid function in newborns
Additive engineering for Sb 2 S 3 indoor photovoltaics with efficiency exceeding 17%
Indoor photovoltaics (IPVs) have attracted increasing attention for sustainably powering Internet of Things (IoT) electronics. Sb2S3 is a promising IPV candidate material with a bandgap of ~1.75 eV, which is near the optimal value for indoor energy harvesting. However, the performance of Sb2S3 solar cells is limited by nonradiative recombination, which is dependent on the quality of the absorber films. Additive engineering is an effective strategy to fine tune the properties of solution-processed films. This work shows that the addition of monoethanolamine (MEA) into the precursor solution allows the nucleation and growth of Sb2S3 films to be controlled, enabling the deposition of high-quality Sb2S3 absorbers with reduced grain boundary density, optimized band positions, and increased carrier concentration. Complemented with computations, it is revealed that the incorporation of MEA leads to a more efficient and energetically favorable deposition for enhanced heterogeneous nucleation on the substrate, which increases the grain size and accelerates the deposition rate of Sb2S3 films. Due to suppressed carrier recombination and improved charge-carrier transport in Sb2S3 absorber films, the MEA-modulated Sb2S3 solar cell yields a power conversion efficiency (PCE) of 7.22% under AM1.5 G illumination, and an IPV PCE of 17.55% under 1000 lux white light emitting diode (WLED) illumination, which is the highest yet reported for Sb2S3 IPVs. Furthermore, we construct high performance large-area Sb2S3 IPV minimodules to power IoT wireless sensors, and realize the long-term continuous recording of environmental parameters under WLED illumination in an office. This work highlights the great prospect of Sb2S3 photovoltaics for indoor energy harvesting
Two loop electroweak corrections to and in the B-LSSM
The rare decays and are important to research new physics beyond standard model. In
this work, we investigate two loop electroweak corrections to and in the minimal
supersymmetric extension of the SM with local gauge symmetry (B-LSSM),
under a minimal flavor violating assumption for the soft breaking terms. In
this framework, new particles and new definition of squarks can affect the
theoretical predictions of these two processes, with respect to the MSSM.
Considering the constraints from updated experimental data, the numerical
results show that the B-LSSM can fit the experimental data for the branching
ratios of and . The
results of the rare decays also further constrain the parameter space of the
B-LSSM.Comment: 33 pages, 9 figures, Published in EPJ
Stabilization of mismatch repair gene PMS2 by glycogen synthase kinase 3β is implicated in the treatment of cervical carcinoma
<p>Abstract</p> <p>Background</p> <p>PMS2 expression loss was reported in a variety of human. However, its importance has not been fully understood in cervical carcinoma. The aim of this study was to determine the expression of PMS2 in cervical carcinoma and evaluate the significance of mismatch repair gene PMS2 regulated by glycogen synthase kinase 3β (GSK-3β) in chemosensitivity.</p> <p>Methods</p> <p>We examined PMS2 and phosphorylated GSK-3β(<it>s</it>9) expression in cervical carcinoma tissues using immunohistochemical staining. Furthermore, we detected PMS2 expression in HeLa cells and evaluate the interaction with GSK-3β after transfection with GSK-3β by small interference RNA (siRNA), co-immunoprecipitation and immunoblotting. We also evaluated the effect of PMS2 transfection on HeLa cells' chemosensitivity to cisplatin treatment.</p> <p>Results</p> <p>We found significant downregulation of PMS2 in cervical carcinoma, which was negatively associated with phosphorylated GSK-3β (<it>s</it>9). Furthermore, we demonstrated GSK-3β transfection was able to interact with PMS2 and enhance PMS2 production in HeLa cells, and increased PMS2 production was responsible for enhanced chemosensitivity.</p> <p>Conclusions</p> <p>Our results provide the evidence that stabilization of PMS2 production by GSK-3β was important to improve chemosensitization, indicating the significance of GSK-3β-related PMS2 downregulation in the development of cervical carcinoma and in developing a potential strategy for chemotherapy.</p
Tear secretion dysfunction among women workers engaged in light-on tests in the TFT-LCD industry
BACKGROUND: The TFT-LCD (thin film transistor liquid crystal display) industry is rapidly growing in Taiwan and many other countries. A large number of workers, mainly women, are employed in the light-on test process to detect the defects of products. At the light-on test workstation, the operator is generally exposed to low humidity (in the clean room environment), flashing light, and low ambient illumination for long working hours. Many workers complained about eye discomfort, and therefore we conducted a study to evaluate the tear secretion function of light-on test workers of a TFT-LCD company. METHODS: We recruited workers engaged in light-on tests in the company during their periodical health examination. In addition to a questionnaire survey of demographic characteristics and ophthalmic symptoms, we evaluated the tear secretion function of both eyes of each participant using the Schirmer's lacrimal basal secretion test with anaesthesia. A participant with one or both eyes yielding abnormal test results was defined as a case of tear secretion dysfunction. RESULTS: During the study period, a total of 371 light-on test workers received the health examination at the clinic of the park, and 52 of them were excluded due to having ophthalmic diseases and other systemic diseases that may affect ophthalmic function. All the remaining 319 qualified workers agreed to participate in this study, and they were all females working by 4-shift rotations. The average age was 24.2 years old (standard deviation [SD] = 3.8), and the average employment duration was 13.6 months (SD = 5.7). Among the 11 ophthalmic symptoms evaluated, eye dryness was the most prevalent (prevalence = 43.3%). In addition, the prevalence of tear secretion dysfunction in at least one eye was 40.1% (128 cases), and contact lens users had an odds ratio of 1.73 (95% confidence interval = 1.02–2.94) in comparison with non-contact lens users. Comparing the Schirmer's test results of those who also participated in the screening in the previous year, we found 40 of the 156 participants (17.2%) with normal test results in the previous year turned abnormal in 2001. In contrast, only 21 of the 76 participants (9.1%) with abnormal test results in the previous year turned normal, and the difference was statistically significant (p = 0.02 for McNemar's test). CONCLUSION: The prevalence of tear secretion dysfunction in woman workers engaged in light-on tests is high and increases with a one-year duration of employment. The use of contact lens may further increase the risk
Contribution of HOGG1 Ser326Cys Polymorphism to the Development of Prostate Cancer in Smokers: Meta-Analysis of 2779 Cases and 3484 Controls
The HOGG1 gene catalyzes the excision of modified bases and removal of DNA damage adducts. It may play an important role in the prevention of carcinogenesis. Ser326Cys polymorphism localizes in exon 7 of the hOGG1 gene. It takes the form of an amino acid substitution, from serine to cysteine, in codon 326. Several epidemiological association studies have been conducted on this polymorphism and its relationship with the risk of prostate cancer. However, results have been conflicting. To resolve this conflict, we conducted a meta-analysis on the association between this polymorphism and prostate cancer, taking into account race, country, sources of controls, and smoking status. A total of nine studies covering 2779 cases and 3484 controls were included in the current meta-analysis. Although no significant association was found between hOGG1 Ser326Cys polymorphism and prostate cancer susceptibility in the pooled analysis, individuals with Ser/Cys+Cys/Cys genotypes were found to have greater risk of prostate cancer if they were also smokers (OR = 2.66, 95% CI = 1.58−4.47) rather than non-smokers (OR = 2.18, 95% CI = 1.13−4.19), compared with those with Ser/Ser genotype. In conclusion, our meta-analysis demonstrates that hOGG1 Ser326Cys polymorphism is a risk factor for prostate cancer in smokers. Further studies are needed to confirm this relationship
Nanoparticle Orientation to Control RNA Loading and Ligand Display on Extracellular Vesicles for Cancer Regression
Nanotechnology offers many benefits, and here we report an advantage of applying RNA nanotechnology for directional control. The orientation of arrow-shaped RNA was altered to control ligand display on extracellular vesicle membranes for specific cell targeting, or to regulate intracellular trafficking of small interfering RNA (siRNA) or microRNA (miRNA). Placing membrane-anchoring cholesterol at the tail of the arrow results in display of RNA aptamer or folate on the outer surface of the extracellular vesicle. In contrast, placing the cholesterol at the arrowhead results in partial loading of RNA nanoparticles into the extracellular vesicles. Taking advantage of the RNA ligand for specific targeting and extracellular vesicles for efficient membrane fusion, the resulting ligand-displaying extracellular vesicles were capable of specific delivery of siRNA to cells, and efficiently blocked tumour growth in three cancer models. Extracellular vesicles displaying an aptamer that binds to prostate-specific membrane antigen, and loaded with survivin siRNA, inhibited prostate cancer xenograft. The same extracellular vesicle instead displaying epidermal growth-factor receptor aptamer inhibited orthotopic breast cancer models. Likewise, survivin siRNA-loaded and folate-displaying extracellular vesicles inhibited patient-derived colorectal cancer xenograft
Impact of Myocardial Viability Assessed by Delayed Enhancement Cardiovascular Magnetic Resonance on Clinical Outcomes in Real World Practice
Background: Delayed enhancement cardiovascular magnetic
resonance imaging (DeCMRI) has become the preferred method for viability assessment. It is well established that viable dysfunctional myocardium has the potential for functional recovery after revascularization.
Objective: Our objective is to evaluate whether viability assessment by DeCMRI affects clinical outcome in daily clinical practice.
Methodology:We retrospectively studied 132 consecutive patients (114 male, mean age 59 ± 10 years) with ischaemic cardiomyopathy (Mean LVEF: 29.1 ± 14%) who underwent CMRI viability testing from 1st Jan-31st Dec 2015 in our centre. Patientswere divided into 3 groups:
Group A: Viable myocardium- optimal medical therapy only (38.6%);
B: Viable myocardium- revascularization done (29.5%); and
C: Nonviable myocardium (29.5%).
Results: Mean age for groups A, B and C were 61.2, 58.3, 56.2 years respectively, p=0.048. The proportion of triple vessel disease in each of the groups were 56.1%, 54.5% and 38.5% (p=0.44); whereas left main involvement was 31.7%, 21.2% and 19.2% respectively (p=0.43). Majority of group C patients did not undergo revascularisation (90%). Group B had statistically significant EF improvement (5.5%, SD 11.9)
compared to Group A (-0.6%, SD 6.7) and Group C (-1.2%, SD 9.8), p value 0.014. Mortality at 1 year was significantly higher in Group A compared to Group Band C (31.4%, 7.7% and 12.8% respectively, p=0.009). MACE rates were also increased in Group A compared to the other two groups (41.2%, 20.5% and 27.0%, p=0.09). Odds Ratio for MACE was 3.01 (95% Cl 1.22 - 7.45) for Group A vs B and 2.8 (95% Cl 1.1 - 6.9) for Group A vs C.
Conclusion: Patients with viable myocardium who did not undergo revascularization (group A) had the worst prognosis, even when compared to those with non-viable myocardium; with significantly higher 1-year mortality. Although not statistically significant, there was also a trend towards higher MACE in these patients. These findings emphasize that patients with poor LV function but viable myocardium need to undergo revascularisation and that optimal medical therapy alone is not sufficient
Testing for Differentially-Expressed MicroRNAs with Errors-in-Variables Nonparametric Regression
MicroRNA is a set of small RNA molecules mediating gene expression at post-transcriptional/translational levels. Most of well-established high throughput discovery platforms, such as microarray, real time quantitative PCR, and sequencing, have been adapted to study microRNA in various human diseases. The total number of microRNAs in humans is approximately 1,800, which challenges some analytical methodologies requiring a large number of entries. Unlike messenger RNA, the majority of microRNA (60%) maintains relatively low abundance in the cells. When analyzed using microarray, the signals of these low-expressed microRNAs are influenced by other non-specific signals including the background noise. It is crucial to distinguish the true microRNA signals from measurement errors in microRNA array data analysis. In this study, we propose a novel measurement error model-based normalization method and differentially-expressed microRNA detection method for microRNA profiling data acquired from locked nucleic acids (LNA) microRNA array. Compared with some existing methods, the proposed method significantly improves the detection among low-expressed microRNAs when assessed by quantitative real-time PCR assay
- …