1,524 research outputs found

    Identification and Analysis of the Blood lncRNA Signature for Liver Cirrhosis and Hepatocellular Carcinoma

    Get PDF
    As one of the most common malignant tumors, hepatocellular carcinoma (HCC) is the fifth major cause of cancer-associated mortality worldwide. In 90% of cases, HCC develops in the context of liver cirrhosis and chronic hepatitis B virus (HBV) infection is an important etiology for cirrhosis and HCC, accounting for 53% of all HCC cases. To understand the underlying mechanisms of the dynamic chain reactions from normal to HBV infection, from HBV infection to liver cirrhosis, from liver cirrhosis to HCC, we analyzed the blood lncRNA expression profiles from 38 healthy control samples, 45 chronic hepatitis B patients, 46 liver cirrhosis patients, and 46 HCC patients. Advanced machine-learning methods including Monte Carlo feature selection, incremental feature selection (IFS), and support vector machine (SVM) were applied to discover the signature associated with HCC progression and construct the prediction model. One hundred seventy-one key HCC progression-associated lncRNAs were identified and their overall accuracy was 0.823 as evaluated with leave-one-out cross validation (LOOCV). The accuracies of the lncRNA signature for healthy control, chronic hepatitis B, liver cirrhosis, and HCC were 0.895, 0.711, 0.870, and 0.826, respectively. The 171-lncRNA signature is not only useful for early detection and intervention of HCC, but also helpful for understanding the multistage tumorigenic processes of HCC

    The Intoxication Effects of Methanol and Formic Acid on Rat Retina Function

    Get PDF
    Objective. To explore the potential effects of methanol and its metabolite, formic acid, on rat retina function. Methods. Sprague-Dawley rats were divided into 3- and 7-day groups and a control. Experimental groups were given methanol and the control group were provided saline by gavage. Retinal function of each group was assessed by electroretinogram. Concentrations of methanol and formic acid were detected by GC/HS and HPLC, respectively. Results. The a and b amplitudes of methanol treated groups decreased and latent periods delayed in scotopic and photopic ERG recordings. The summed amplitudes of oscillatory potentials (OPs) of groups B and C decreased and the elapsed time delayed. The amplitudes of OS1, OS3, OS4, and OS5 of group B and OS3, OS4, and OS5 of group C decreased compared with the control group. The IPI1 of group B and IPI1-4 of group C were broader compared with the control group and the IPI1-4 and ET of group B were broader than group C. Conclusions. Both of scotopic and photopic retinal functions were impaired by methanol poisoning, and impairment was more serious in the 7-day than in the 3-day group. OPs, especially later OPs and IPI2, were more sensitive to methanol intoxication than other eletroretinogram subcomponents

    Hollow Titanium Silicalite Zeolite: From Fundamental Research to Commercial Application in Environmental-Friendly Catalytic Oxidation Processes

    Get PDF
    The systematical investigation on the synthesis, characterization, formation mechanism, and catalytic application of hollow titanium silicalite (HTS) zeolite has been reviewed. HTS is prepared through a “dissolution–recrystallization” post-treatment in the presence of template under hydrothermal conditions. Compared with TS-1, HTS is of unique hollow voids and with high framework Ti content, which significantly increase the mass diffusion and the amount of active sites, respectively. Thus, HTS zeolite displays high catalytic activity and stability in many oxidation processes with H2O2 oxidant, that is, cyclohexanone ammoximation, phenol hydroxylation, propylene epoxidation, Baeyer-Villiger oxidation of cyclohexanone, and selective oxidation of aromatics and cycloalkanes. The former three ones have been commercialized and run smoothly, which have promising economic and environmental significance

    Coexistence of splenic marginal zone lymphoma with hepatocellular carcinoma: a case report

    Get PDF
    BACKGROUND: Coexistence of splenic marginal zone lymphoma with hepatocellular carcinoma is rare. Although some reports have suggested the possible pathogenic role of HBV, HCV, chronic and persistent antigenic stimulation in lymphoma, their role in causing lymphomas is still unclear. CASE PRESENTATION: We describe a hepatocellular carcinoma with concomitant splenic marginal zone lymphoma in a 64-year-old Chinese man with cirrhosis. Serum hepatitis B virus surface antigen was positive and antihepatitis C virus antibody was negative. The resected liver mass measuring 4 × 3 × 3 cm was grey and soft with a small area of bleeding, necrosis and intact capsule. Cut surface of the spleen was red-purple and had a diffuse reticulonodular appearance indicative of prominent white pulp. On histologic sections, the liver mass was well and moderately differentiated hepatocellular carcinoma, and the splenic tumor was a specific low-grade small B-cell lymphoma. Immunohistochemical staining and gene rearrangement studies supported that the splenic tumor represents a clonal B-cell lymphoma. Therefore, the diagnosis of SMZL was made from the splenic specimen. CONCLUSION: To our knowledge, this is the second case report describing coexistence of hepatocellular carcinoma and splenic marginal zone lymphoma in the course of chronic HBV infection. However, we cannot assert at present that hepatitis B virus is directly involved in splenic lymphomagenesis until more information is collected from more cases in the future

    Aqua­[1-(1,10-phenanthrolin-2-yl-Îș2 N,Nâ€Č)-1H-pyrazol-3-amine-ÎșN 2](sulfato-ÎșO)copper(II) methanol monosolvate dihydrate

    Get PDF
    In the title compound, [Cu(SO4)(C15H11N5)(H2O)]·CH3OH·2H2O, the CuII ion is in a distorted square-pyramidal geometry, in which three N atoms from the chelating 1-(1,10-phenanthrolin-2-yl)-1H-pyrazol-3-amine ligand and one O atom from a sulfate anion define the basal plane and the O atom from the coordinating water mol­ecule is located at the apex. In the crystal, hydrogen-bonding inter­actions involving the coordinating and solvent water mol­ecules, the methanol solvent mol­ecule and the amine group (one with an intra­molecular inter­action to one of the sulfate O atoms) of the complex are observed. π–π inter­actions between symmetry-related phenantroline moieties, with a shortest centroid–centroid inter­action of 3.573 (2)°, are also present

    Environmental-Friendly Catalytic Oxidation Processes Based on Hierarchical Titanium Silicate Zeolites at SINOPEC

    Get PDF
    Since it was claimed by EniChem in 1983 for the first time, titanium silicate‐1 (TS‐1) zeolite presented the most delightful catalytic performance in the area of selective organic oxidation reactions. To enhance the mass diffusion property, hierarchical titanium silicate with hollow cavities within crystal was prepared by using a post‐synthesis treatment in the presence of organic template, and then, it was commercially produced and employed in many industrial catalytic oxidation processes, such as propylene epoxidation, phenol hydroxylation, and cyclohexanone ammoximation. Moreover, we also developed several totally novel oxidation reactions on hollow titanium silicate (HTS) zeolite, i.e., Baeyer‐Villiger oxidation of cyclohexanone and chlorohydrination of allyl chloride with HCl and H2O2. In all cases, HTS shows much better catalytic performance than TS‐1, attributing to the mass diffusion intensification by introducing hollow cavities. On the other hand, enormous works on synthesizing hierarchical TS‐1 zeolites with open intracrystalline mesopores have been done via silanization treatment and recrystallization. Based on them, several bulk molecule oxidation processes with tert‐butyl hydroperoxide, such as epoxidation of fatty acid methyl ester (FAME) and large olefins, have been carried out. As a consequence, hierarchical TS‐1 zeolites supply a platform for developing environmental‐friendly catalytic oxidation processes to remarkably overcome the drawbacks of traditional routes

    The Intoxication Effects of Methanol and Formic Acid on Rat Retina Function

    Get PDF
    Objective. To explore the potential effects of methanol and its metabolite, formic acid, on rat retina function. Methods. SpragueDawley rats were divided into 3-and 7-day groups and a control. Experimental groups were given methanol and the control group were provided saline by gavage. Retinal function of each group was assessed by electroretinogram. Concentrations of methanol and formic acid were detected by GC/HS and HPLC, respectively. Results. The a and b amplitudes of methanol treated groups decreased and latent periods delayed in scotopic and photopic ERG recordings. The summed amplitudes of oscillatory potentials (OPs) of groups B and C decreased and the elapsed time delayed. The amplitudes of OS1, OS3, OS4, and OS5 of group B and OS3, OS4, and OS5 of group C decreased compared with the control group. The IPI1 of group B and IPI1-4 of group C were broader compared with the control group and the IPI1-4 and ET of group B were broader than group C. Conclusions. Both of scotopic and photopic retinal functions were impaired by methanol poisoning, and impairment was more serious in the 7-day than in the 3-day group. OPs, especially later OPs and IPI2, were more sensitive to methanol intoxication than other eletroretinogram subcomponents

    A Porous and Conductive Graphite Nanonetwork Forming on the Surface of KCu7S4 for Energy Storage

    Get PDF
    A flexible all-solid-state supercapacitor is fabricated by building a layer of porous and conductive nanonetwork on the surface of KCu7S4 nanowires supported on the carbon fiber fabric, where the porous and conductive nanonetwork is assembled by graphite nanoparticles. This porous graphite layer plays a key role in providing ion diffusion channels to access the KCu7S4 through the pores for electrochemical reactions and forming electron transport pathways from the graphite network to the electronic collector of the carbon fiber fabric. This flexible supercapacitor exhibits excellent electrochemical performance with high specific capacitance of 408 F g−1 at a current density of 0.5 A g−1 and high energy density of 36 Wh kg−1 at a power density of 201 W kg−1. Moreover, it is cost-effective, easy to scale up and environmentally friendly with high flexibility. Our investigation demonstrates that such a porous and conductive nanonetwork could be used to improve the charge storage efficiency for a wide range of electrode materials

    Changes in Volatile Profiles and Activity of Hydroperoxide Lyase and Alcohol Dehydrogenase During the Development of Cabernet Sauvignon Grapes (Vitis vinifera L.)

    Get PDF
    In this study we focused on the development of Cabernet Sauvignon grapes and investigated changes in theactivity of alcohol dehydrogenase (ADH) and hydroperoxide lyase (HPL) in different tissues. We sampledgrape skin at four, six, seven, eight, nine, 10, 12, 14 and 16 weeks after anthesis; developing flowers whenblooming at 0%, 5%, 50%, and 90%; and leaves at two and four weeks before anthesis and at two, four,six, eight, nine, and 10 weeks after anthesis. We also examined the type and fluctuation of volatile contents.ADH activity increased with the development of flowers and grape skins, which led to the increasing oftypes and concentration of alcohols. Low levels of 9-HPL led to low concentrations of C9 compounds.According to this paper, C6 compounds became abundant with the development of grape berries, while theactivity of 13-HPL kept at a low level in the flowers and grape skins. There might have been a high level of13-HPL activity from the end of flowering until fruit setting that we did not detect. Furthermore, similarC6 and C5 compounds were detected across all tissues, including hexanal, (E)-2-hexenal, (Z)-3-hexenal,(Z)-2-penten-1-ol, (Z)-3-hexen-1-ol, 1-hexanol and 3-hexen-1-ol. Generally speaking, the concentrations ofC6 and C5 compounds could be used as the criterion of maturation of the three grape tissues
    • 

    corecore