2,110 research outputs found

    Novel Non-equilibrium Phase Transition Caused by Non-linear Hadronic-quark Phase Structure

    Get PDF
    We consider how the occurrence of first-order phase transitions in non-constant pressure differs from those at constant pressure. The former has shown the non-linear phase structure of mixed matter, which implies a particle number dependence of the binding energies of the two species. If the mixed matter is mixed hadron-quark phase, nucleon outgoing from hadronic phase and ingoing to quark phase probably reduces the system to a non-equilibrium state, in other words, there exists the imbalance of the two phases when deconfinement takes place. This novel non-equilibrium process is very analogous to the nuclear reactions that nuclei emit neutrons and absorb them under appropriate conditions. We present self-consistent thermodynamics in description for the processes and identify the microphysics responsible for the processes. The microphysics is an inevitable consequence of non-linear phase structure instead of the effect of an additional dissipation force. When applying our findings to the neutron star containing mixed hadron-quark matter, it is found that the newly discovered energy release might strongly change the thermal evolution behavior of the star.Comment: 18pages,3figures;to be accepted for publication in Physics Letters

    The valley filter efficiency of monolayer graphene and bilayer graphene line defect model

    Full text link
    In addition to electron charge and spin, novel materials host another degree of freedom, the valley. For a junction composed of valley filter sandwiched by two normal terminals, we focus on the valley efficiency under disorder with two valley filter models based on monolayer and bilayer graphene. Applying the transfer matrix method, valley resolved transmission coefficients are obtained. We find that: i) under weak disorder, when the line defect length is over about 15nm15\rm nm, it functions as a perfect channel (quantized conductance) and valley filter (totally polarized); ii) in the diffusive regime, combination effects of backscattering and bulk states assisted intervalley transmission enhance the conductance and suppress the valley polarization; iii) for very long line defect, though the conductance is small, polarization is indifferent to length. Under perpendicular magnetics field, the characters of charge and valley transport are only slightly affected. Finally we discuss the efficiency of transport valley polarized current in a hybrid system.Comment: 6 figure

    Effect of electromagnetic stirring on solidification structure of austenitic stainless steel in horizontal continuous casting

    Get PDF
    An investigation on the influence of low frequency rotary electromagnetic stirring on solidification structure of austenitic stainless steel in horizontal continuous casting was experimentally conducted and carried out on an industrial trial basis. The results show that application of appropriate electromagnetic stirring parameters can obviously improve the macrostructure of austenitic stainless steel, in which both columnar and equiaxed grains can be greatly refined and shrinkage porosity or cavity zone along centerline can be remarkably decreased due to eliminating intracrystalline and enlarging equiaxed grains zone. The industrial trials verify that the electromagnetic stirring intensity of austenitic stainless steel should be higher than that of plain carbon steel. Electromagnetic stirring has somewhat affected the macrostructure of austenitic stainless steel even if the magnetic flux density of the electromagnetic stirring reaches 90 mT (amplitude reaches 141 mT) in average at frequency f=3-4Hz, which provides a reference for the optimization of design and process parameters when applying the rotary electromagnetic stirrer

    Monitoring human cytomegalovirus infection with nested PCR: comparison of positive rates in plasma and leukocytes and with quantitative PCR

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human cytomegalovirus (HCMV) infection poses a significant health threat to immunocompromised individuals. Here we performed this study to set up a highly sensitive nested PCR method applicable for detecting HCMV infection in high-risk individuals. In this work, 106 blood specimens from 66 patients with potential HCMV infection were obtained. Total DNA was extracted separately from plasma and peripheral blood leukocytes (PBL) of each sample. HCMV DNA was detected in parallel by nested PCR and quantitative real-time PCR (qRT-PCR), and the results were compared.</p> <p>Results</p> <p>Serial dilution test revealed that the detection limit of nested PCR was 180 copies/ml. The nested PCR showed a higher positive rate than qRT-PCR (34.9% vs. 12.3%, p < 0.001). The positive rate of nested PCR based on PBL DNA was significantly higher than that based on plasma DNA (34.9% vs. 18.9%, p = 0.002). Of the 14 patients with serial samples, 11 were positive for HCMV DNA in PBL while only 7 were positive in plasma. Moreover, for each patient, nested PCR using PBL DNA also detected more positive samples than that using plasma DNA.</p> <p>Conclusion</p> <p>Combined use of nested PCR with PBL DNA is highly sensitive in defining HCMV infection. This assay is particularly useful in the case of quantification not essential.</p

    Recent advances in crystalline oxidopolyborate complexes of d-block or p-block metals: structural aspects, syntheses and physical properties

    Get PDF
    Crystalline materials containing hybrid inorganicā€“organic metal borates (complexes with oxidoborate ligands) display a variety of novel framework building blocks. The structural aspects of these hybrid metallaoxidoborates containing Cd(II), Co(II), Cu(II), Ga(III), In(III), Mn(II), Ni(II) or Zn(II) metal centers are discussed in this review. The review describes synthetic approaches to these hybrid materials, their physical properties, their spectroscopic properties and their potential applications

    A theory of multiple vehicle type dynamic marginal cost considering departure time choices

    Get PDF
    The analysis of single vehicle type dynamic marginal cost is extended to multiple vehicle type dynamic one based on timeā€dependent multiple vehicle type queue analysis at a bottleneck. First, a dynamic link model to repā€ resent the interactions between cars and trucks is provided. Then, the analytic expression of a multiple vehicle type dynamic marginal cost function considering departure time choices is deduced under congested and unā€congested conditions and consequently, a dynamic toll function is given. A heuristic algorithm is introduced to solve multiple vehicle type dynamic queues and toll under system optimum and user equilibrium conditions taking into account traveler's departure time. A numerical example shows that a dynamic congestion toll can diminish queues and improve system conditions when traffic demand is not changed. First published online: 10 Feb 201
    • ā€¦
    corecore