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We consider how the occurrence of first-order phase transitions in non-constant pressure differs
from those at constant pressure. The former has shown the non-linear phase structure of mixed
matter, which implies a particle number dependence of the binding energies of the two species. If
the mixed matter is mixed hadron–quark phase, nucleon outgoing from hadronic phase and ingoing
to quark phase probably reduces the system to a non-equilibrium state, in other words, there exists
the imbalance of the two phases when deconfinement takes place. This novel non-equilibrium process is
very analogous to the nuclear reactions that nuclei emit neutrons and absorb them under appropriate
conditions. We present self-consistent thermodynamics in description for the processes and identify
the microphysics responsible for the processes. The microphysics is an inevitable consequence of non-
linear phase structure instead of the effect of an additional dissipation force. When applying our findings
to the neutron star containing mixed hadron–quark matter, it is found that the newly discovered energy
release might strongly change the thermal evolution behavior of the star.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
1. Introduction

Glendenning [1] had realized the essentially different character
of first-order phase transition between the simple system possess-
ing a single conserved quantity and the complex one having more
than one conserved charge. One of the most remarkable features of
a simple system is the constancy of the pressure during the tran-
sition from one homogeneous phase to the other. In fact, this is
the typical depiction of first-order phase transition in textbooks.
However, the properties of the phase transition in the complex
system turn out to be quite different. The pressure varies continu-
ously with the proportion of the two phases, and obviously, some
quantities are non-linear functions of the proportion. This so-called
non-linear phase structure has been made a systematic exposition
by Glendenning in his article and book [1,2]. He also showed a de-
confinement case in the core of neutron stars.

For a long time, people only pay attention to the effect of the
mixed phase on the structure of neutron stars regardless of the
feature of the transition in progress. Perhaps the discussion of such
problem is thought to be unnecessary as emphasized by Heisel-
berg et al. [3]: the two phases are always in balance as transitions
from hadron into quarks are governed by strong reactions with ex-
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tremely short timescales. However this well-known creed should
be modified for the phase transitions in varying pressure. In this
Letter, we will show that non-linear phase structure may devote
to dynamics of phase transition, and it may lead to different dy-
namical behaviors unlike bare nucleon reactions n → 2d + u and
p → d + 2u, where n, p, u, d respectively denote neutron, proton,
u and d quarks.

Our problem begins with a thermodynamical analysis. As we
known, the fundamental formula of thermodynamics must hold for
any situation. For a system, an effective Hamiltonian or energy de-
pends on phenomenological parameters, which are assumed to be
functions of thermodynamical variables, temperature and chemical
potential (or density), there exists so-called self-consistency prob-
lem of thermodynamics. When studying a plasma, it is common to
regard the system of interacting charged particles as an ideal gas
of noninteracting quasi-particles, where a temperature-dependent
mass is applied to the effective Hamiltonian of ideal gas. The sys-
tem of the mixed phase with non-linear phase structure can be
treated in the same way. Since particle density and energy density
aren’t linear functions of proportion, binding energy of each phase
in mixed phase, energy per baryon, should be function of parti-
cle number contained in each phase or binding energy of mixed
matter is a non-linear function of fraction in particle number. This
means the description of energy of such system needs an inter-
nal phenomenological parameter, the density-dependent fraction
under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by
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in particle number, besides particle number density. To maintain
the self-consistency of the system, the standard treatment of this
problem is to impose a supplement energy term (or so-called “zero
point energy”) [4]. In our case, the zero point energy means a
Gibbs free enthalpy difference, or equivalently say imbalance of
two phases. During transitions, the additional variable, density-
dependent fraction in particle number, is generally thought to be
a parameter describing non-equilibrium status [5,6]. In this Letter,
we will exhibit the related self-consistency of thermodynamics and
get the chemical potential difference of the two phases.

Understandings of microphysics of this problem are as follows.
We take an example of deconfinement phase transition. When
hadrons are converted into quarks, baryon number of hadronic
phase decreases but that of quark phase increases, their binding
energies both change because binding energy of mixed matter is a
non-linear function of the fraction in baryon number. Some energy
is released as heat if they reduce. In the case of the phase transi-
tion under constant-pressure, the binding energy of each phase is
independent of the particle number, the conversion couldn’t cause
any change in each binding energy, and dissipation is impossible.
The crucial difference between the cases is that, each of subsys-
tems (hadronic phase and quark phase) in mixture is of structure
for the first case, while the latter only includes two uniform clus-
ters. This can be easier to be understand if the subsystems with
structure are regarded as two “giant nuclei”. When a real nucleus
emits or absorbs a neutron, liberation of nuclear energy is pos-
sible under some condition. Likewise, the increase or decrease of
baryon number of the “giant nuclei” leads to a rearrangement of
particles in the interior of them. One of possible consequences
is reducing their binding energies. The excess of the energies is
certainly released as heat. If the system of mixed hadron–quark
matter is being compressed, the above dissipation processes may
occur for converting hadrons into quarks. Not only the energy of
the system but also the Gibbs free enthalpy should be lowered
by the processes. The decrease of Gibbs free enthalpy is equiv-
alent to imbalance of two phases. This is quite different from
constant-pressure phase transition in which no Gibbs free enthalpy
changes.

The plan of this Letter is as follows. In Section 2 we briefly
review the phase transition with two conserved charges. We in-
troduce the fraction in baryon number instead of the fraction in
volume to reexpress the energy per baryon and energy density
of mixed phase. This is a useful preparation for a discussion of
dissipation processes. In Section 3 we demonstrate the possible ex-
istence of non-equilibrium phase transition from thermodynamical
analysis and microphysics as well as our general formulism of this
problem. In Section 4 we have an application of the general theory
by considering the mixed phase with specific equations of state of
hadronic and quark matter that may exist in neutron stars.

2. Review of phase transition with more than one charge

As a useful background to our discussion below, we first re-
count some properties of the particular phase transition following
Glendenning’s philosophy [1]. A substance composed of two con-
served charges or independent components is a hotbed of such
phase transition. It is important to realize that although there ex-
ist two charges they are conserved only globally rather than locally,
and for this reason phase transitions may involve the mixed phase
through which the pressure varies continuously.

In general, Gibbs condition for phase equilibrium is that chem-
ical potential, temperature and pressure in two phases be equal.
Since the pressure now depends on two independent chemical po-
tentials, the equilibrium condition of two phases can be expressed
as
P Q (μb,μe, T ) = P H (μb,μe, T ) (1)

where Q , H represent respectively high and low density phases
or they can also denote quark and hadronic phases subsequently.
Satisfying global charge neutrality, Eq. (1) can be solved for the
chemical potentials, μb,e(χ), in mixed phase, where χ is fraction

in volume, χ = V Q
V H +V Q

. These in turn yield the particle and energy
densities

ρ = χρQ + (1 − χ)ρH , (2)

ε = χεQ + (1 − χ)εH . (3)

If we introduce replaced parameter for convenience, the frac-
tion in baryon number η(= A Q /A), there are identities χ = η ρ

ρQ
,

1 −χ = (1 −η)
ρ
ρH

. The energy per baryon or so-called binding en-
ergy can then also be constructed by combining Eqs. (2) and (3),

e = ε

ρ
= ηeQ + (1 − η)eH . (4)

The energy density is restated as

ε = ηρeQ + (1 − η)ρeH . (5)

These illustrate the non-linear phase structure of the mixed phase.
At zero temperature, the energy for the system relies on thermo-
dynamical variable, ρ , and internal parameter, η, which is still
ρ-dependent. These properties of the mixed phase will prove to
be important in following discussions.

If local charge neutrality is enforced in the description of the
first-order phase transition, the system would reduce to a simple
substance with only one independent chemical potential, the text-
book example. The Gibbs condition has a unique solution which
implies a fixed phase transition point. Thus, the mixed phase be-
comes the usual Maxwell construction and shows linear phase
structure.

3. Non-equilibrium phase transition

In this section, we try to discuss the non-equilibrium property
of the phase transition having more than one conserved charge
and give the description of the imbalance of two phases from
different aspects, namely, thermodynamics, microphysics and re-
laxation dynamics.

Thermodynamic self-consistency. The problem that whether the
two phases are balance during the phase transition or not arises
from thermodynamics. We begin with the thermodynamic formula
for the coexistence of two phases

dε = P + ε

ρ
dρ +

∑
k

ρμk dηk, (6)

where P denotes the pressure of system, μk , the chemical po-
tential of species k, with k = H, Q for two chemical component
“mixture”. If chemical balance is assumed, the formula reduces to

dε = P + ε

ρ
dρ, (7)

or equivalently

P = ρ2 d

dρ

(
ε

ρ

)
. (8)

One can easily check that the identities (7) and (8) hold for con-
stancy η only, and if η is density dependent it is no longer true.
This is the so-called problem of thermodynamic self-consistency.
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Fig. 1. Schematic diagrams of nuclear levels when hadronic matter losses a nucleon and hence quark matter captures a nucleon. Panels (a1) and (b1) represent the case of
release binding energies.
To maintain the thermodynamical formulae, we need a supple-
ment energy term (or so-called “zero point energy”) as done by [4].
Therefore the energy could be rewritten as e∗ = e + e0(η) or
ε∗ = ρ(e + e0). In the standard case, the zero point energy, e0, is a
constant and it is usually subtracted from the system energy spec-
trum. This cannot be done, however, for a density dependence of
parameter, η, as the system’s lowest state energy e0(η) becomes a
function of particle density. Under such consideration, the funda-
mental thermodynamical formula is expressed as

dε∗ = P + ε∗

ρ
dρ. (9)

The identity (9) can also be presented in the following form,

P = ρ2 d

dρ

(
ε∗

ρ

)
. (10)

When the differential operation proceeds, we get

P = ρ2 ∂

∂ρ

(
ε∗

ρ

)
η

+ ρ2 ∂

∂η

(
ε∗

ρ

)
dη

dρ
. (11)

The formulae (10) and (11) aren’t well-matched each other. We
can always satisfy the identity (10) by the additional requirement

∂

∂η

(
ε∗

ρ

)
= 0. (12)

From the above self-consistency condition, we can obtain the equa-
tion of “zero point energy”

de0(η)

dρ
= − ∂e

∂η

dη

dρ
. (13)

Taking derivative of Eq. (4), we obtain ∂e
∂η = μQ − μH , and hence

Eq. (13) becomes

de0(η)

dρ
= −

∑
μk

dηk

dρ
. (14)

Substituting Eq. (14) into Eq. (9), Eq. (9) immediately returns to
Eq. (6). In other words, Eq. (6) can just hold if and only if two
phases are chemical imbalance, i.e., the last term in the right hand
side of the equation should be ensured a nonzero value. Thus, one
can see that the chemical imbalance during the phase transition
is extremely necessary for thermodynamic self-consistency of the
system.
Microphysics. The above thermodynamics can be understood
through the following microphysics. Because of the non-linear
combination of the two phases, apparently certain energy-level
structures are hidden behind the hadronic and quark matter in
mixed phase. As a result, the energy surplus due to changes in
binding energies is possible when hadronic cluster of the mixed
phase losses nucleons and hence they are received by quark phase.
The behaviors are analogous to neutron emission and absorption
through nuclei [7]. So, similar to the description of energy-level
structure in nuclei, we plot the possible transition as Fig. 1.

Since eH and eQ are constants in Maxwell construction, the
panels (a2) and (b3) in Fig. 1 represent this deconfinement pro-
cess which is equilibrium phase transition. Converting hadrons into
quarks cost no energy. Gibbs construction of the mixed phase with
global charge neutrality has various possible combinations with
panels (a) and (b) in Fig. 1, which reflects baryon number de-
pendence of eH and eQ . If the functions eH (AH ) and eQ (A Q ) are
just conformed to be a combination of panels (a1) and (b1), the
deconfinement behavior even for an infinitesimal process is sure
to be associated with some energy release. The panel (a1) shows
that a nucleon emission lowers the energy state of hadronic mat-
ter AH eH (AH ) to (AH − 1)eH (AH − 1). In the case that a threshold
�H = AH eH (AH ) − (AH − 1)eH (AH − 1) exceeds an escaping nu-
cleon energy, the excess of energy reads

q1 = �H − eH (AH ) = AH
∂eH

∂ AH
. (15)

The panel (b1) shows a nucleon is captured by quark matter in
the mixed phase and then dissolves into quarks to excite to a
higher state. The nucleon energy is in excess of the threshold for a
nucleon absorption, �Q = (A Q + 1)eQ (A Q + 1) − A Q eQ (A Q ), ex-
pressed as

q2 = eH (AH ) − �Q = eH − eQ − A Q
∂eQ

∂ A Q
. (16)

The conversion of a hadron into quarks can therefore liberate total
energy, q = q1 + q2, as

q = eH − eQ − η
∂eQ

∂η
− (1 − η)

∂eH

∂η
, (17)

where we used the relationship dAH = −dA Q for the sake of
the conservation of total baryon number. The right hand side
of Eq. (17) just equals to − ∂e

∂η (see Eq. (4)), and considering

δμ = − ∂e , we arrive at q ≡ δμ. It means that the two phases are

∂η
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Table 1
Nucleon–meson coupling constants.

Name (
gσ
mσ

)2 (fm2) (
gω
mω

)2 (fm2) (
gρ

mρ
)2 (fm2) 100b 100c Ref.

RMF1 11.79 7.149 4.411 0.2947 −0.1070 [2]
RMF2 8.492 4.356 5.025 0.2084 2.780 [8]
RMF3 10.339 4.820 4.791 1.1078 −0.9751 [2]
imbalance even if an infinitesimal conversion takes place, which
fully coincides with the requirement of self-consistent condition of
thermodynamics.

In addition to the conversion before and after, we can also eval-
uate the mean energy release per baryon, q

A , as the difference of
Gibbs free enthalpy per baryon between initial and final states,
q
A = gi − g f . The free enthalpy for initial and final states can be
calculated by g = e + P

ρ ,

gi = ηeQ + (1 − η)eH + Pi

ρi
, (18)

g f = 1

A
(eH − eQ ) − η

∂eQ

∂ A Q
+ (1 − η)

∂eH

∂ AH
+ P f

ρ f
. (19)

The enthalpy difference therefore reads

A(gi − g f ) = eH − eQ − η
∂eQ

∂η
− (1 − η)

∂eH

∂η

+ Pi

ρi
− P f

ρ f
. (20)

The two terms, Pi
ρi

and
P f
ρ f

, cancel each other is possible for the

varying pressure case if eH − eQ − η
∂eQ
∂η − (1 − η) ∂eH

∂η > 0 satis-
fies. Eq. (17) thereby restores. Changes in enthalpy of the system
devoted itself to heat. But if eH − eQ − η

∂eQ
∂η − (1 − η) ∂eH

∂η < 0,
Pi
ρi

− P f
ρ f

must be positive and should observe eH − eQ − η
∂eQ
∂η −

(1−η) ∂eH
∂η + Pi

ρi
− P f

ρ f
= 0. No change in enthalpy occurs. The panels

(a3) and (b3) in Fig. 1 are corresponding to this case.
In Maxwell construction case, the enthalpy difference van-

ishes, which cost no energy for the conversion. During the phase
transition, the process is isobaric one. In accordance with max-
imum work principle, we have A(gi − g f ) = eH − eQ − η

∂eQ
∂η −

(1 − η) ∂eH
∂η + P ( 1

ρi
− 1

ρ f
) � 0. Governed by the conservation of en-

ergy, the equality shall be taken. The work done on a system by
an external force is just transformed into the binding energy of
the system. The panels (a2) and (b3) in Fig. 1 are appropriate de-
scriptions of the process.

What’s more, Eqs. (10) and (17) can be presented in another
form

q ≡ δμ =
((

∂e

∂ρ

)
η

− de

dρ

)(
dη

dρ

)−1

, (21)

where, q (or δμ) is the heat per baryon during the phase transi-
tion. Using the above formula, one can numerically calculate q for
specific equation of state.

Clearly, the cause of this non-equilibrium is quite different from
the metastable state usually described in textbook, where an ad-
ditional dynamics needs to be considered, such as the molecular
size and force in Van der Waals model that lead to the gas–liquid
phase transition with metastable states. The additional dynamics
is unnecessary for the non-equilibrium state which has been dis-
cussed above, since the non-linearity of the mixed phase structure
provides automatically a relaxation dynamics as shown in Eq. (17).
4. Heat generation of neutron star containing mixed
hadron–quark phase

In Section 3, we have demonstrated the non-equilibrium nature
of first-order phase transitions for complex system with more than
one conserved charge. It provides a new internal heating mecha-
nism for neutron stars. We now consider this problem. Since the
precise evolution simulation of neutron stars isn’t our central is-
sue in this Letter, we will only estimate the heat production rate
in uniform density model.

We construct the mixed hadron–quark phase using the method
given by Glendenning [1]. For hadronic matter, we adopt the rel-
ativistic mean-field theory (RMF) description, and considering the
representative parameters for soft, moderate and stiff equations of
state as listed in Table 1. For quark matter, the MIT bag model
is applied, and the bag constant is taken as B1/4 = 170 MeV,
180 MeV and 190 MeV. The heat per baryon q is numerically
solved employing Eq. (24), and the numerical results are shown
in Fig. 2 and Fig. 3, where the equations of state are denoted by
combined expression of RMFn + B1/4 (n = 1,2,3).

As can be seen from Fig. 2 and Fig. 3, although the uncertain-
ties of the equations of state have certain effects on the results, the
mean value of heat per baryon q̄ is order of 0.1 MeV. In contrast,
for the rotochemical heating mechanism resulted by the chemi-
cal imbalance of the β process in neutron stars [9], the heat per
baryon is order of 0.01 MeV. Sine the rotochemical heating mecha-
nism has been extensively studied and found to be one of the most
effective heating mechanism for rotating neutron stars, we expect
that our newly finding energy release might strongly change the
thermal evolution behavior of neutron stars. To show this more
clearly, in the following we will estimate the heating rate for neu-
tron stars, where the structure of the star is not considered.

The neutron star is rotating but spins down due to various radi-
ations. The spin-down causes the continuing conversion of hadrons
into quarks in the core accompanying by the nucleon emission
and absorption as discussed in Section 3. Within the framework
of Hartle [10], the rotation frequencies of neutron stars are always
slow enough even at Kepler frequency. The pressure in the core of
neutron stars varies with change in density. Following Fernández
and Reisenegger’s way [11], we can write the heat production rate
by the integral over the core of the mixed phase

H = 2ΩΩ̇

∫
core

dN q
dη

dP

(
∂ P

dΩ2

)
N
, (22)

where Ω , Ω̇ represent angular velocity of the star and its deriva-
tive of time, N is the baryon number enclosed by a surface of
constant pressure in the star. Considering the core of uniform den-
sity, we have the heat production rate by taking average value,

H = −Ncoreq̄
2ΩΩ̇

Ω2
K

, (23)

where ΩK refers to Kepler angular velocity, q̄ is a mean value, and
a reasonable approximation for rotating neutron stars, ∂ P

∂Ω2 ∼ − P
2 ,
ΩK
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Fig. 2. The baryon number density dependence of releasing energy per converted baryon for soft, moderate and stiff hadronic matter equation of state. The horizontal lines
represent the mean values.

Fig. 3. Same as Fig. 2, but for moderate hadronic matter equation of state and different bag constants.
is used [11,12]. For a standard dipole field B = 6.4π ×1019 (−ΩΩ̇)
1
2

Ω2

and the baryon number of 1056, we have

H ∼ 1041
(

q̄

0.1 MeV

)(
B

1012 G

)2(
Ω

6000 rads−1

)4

ergs−1. (24)

This is to be higher than, at least be compared with, the neu-
trino and photon luminosities in the absence of pairing phenom-
ena. From this simple estimate, we believe that the energy release
could significantly change the thermal properties of the neutron
stars containing deconfinement matter in which the fast cooling
process dominates.

5. Conclusion and discussion

We made the discussion of a class of non-equilibrium phase
transitions without additional dissipation force and applied it to
the possible phase transition in the core of neutron stars from
hadrons to quark matter. It is quite different from the case of first-
order phase transition of the text-book style.
In fact, it isn’t always correct to insist the equilibrium phase
transition when first-order phase transition in bulk matter is ex-
tended to the complex case that there is more than one conserved
charge in the system. For such a complex system, it is realized
that the conserved charges shall be shared by the two phases to
satisfy Gibbs conditions in phase equilibrium and the energy of the
mixed phase varies in a non-linear fashion with respect to the den-
sity. The non-linear phase structure leads to the imbalance of the
two phases during the phase transition under certain conditions.
The deconfinement reactions, n → 2d + u and p → d + 2u, indeed
don’t arouse the nonequilibrium, but the other processes, nucleon
outgoing from hadronic phase and ingoing to quark phase, dom-
inate the phase transition. In this Letter, we come to the above
conclusion from various aspects, namely, thermodynamics and mi-
crophysics. First, the self-consistency of thermodynamics needs the
chemical imbalance during phase transition. Second, if the system
is described using the tools of energy level structure, which is sim-
ilar to that of nuclei, one can easily see that the energy release is
indeed possible.

If one has a microscopic model which deals with a first-order
phase transition in Maxwell construction (constant-pressure case),
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the metastable phase can be obtained. In text-book, the gas–liquid
transition of the realistic H2O molecular system is just the case
because the size and force of molecular involves in Van der Waals
gas. Here, one need no additional physics for the non-equilibrium
behaviors at all. The non-linearity induced by the non-linear phase
structure is the origin of the dissipation force. The macroscopic
non-equilibrium state is also quite different from the metastable
phase of usual gas–liquid phase transition, and it is an accumula-
tion of infinitely many micro-metastable phases.

In previous literatures, many authors insisted the above case
into the mold of equilibrium phase transition. This isn’t true tran-
sition behaviors in the complex system. Compared with the first-
order phase transition in text-book, the difference in transition
behavior is dramatic. Some other form of energy in the system is
capable to be converted into heat energy. As a result, the thermal
properties of the system will be significantly influenced during the
phase transition.

This effect may be relevant to many astrophysical and experi-
mental physical problems, including phase transitions in early uni-
verse and the condensation of other structure, multicomponent
mixtures in chemistry and accelerator experiments on the nuclear
gas–liquid transition. One particular example is the delayed cooling
of isolated neutron stars and the old neutron stars with high ther-
mal luminosity. The neutron stars with quark matter core are not
so cold by heating [13]. The old pulsar, PSR J0437-4715, is inferred
as high thermal luminosity, the follow-up of which has been done
by Kargaltsev et al. [14,15]. A heating mechanism is required to
persevere high temperature of the star. It seems appropriate with
our estimate of the heat production rate. Another interesting ap-
plication is the cooling of X-ray transients. The fluxes coming from
deep crust and core contribute or influence the quiescent X-ray
evolution [16–19]. As known, compression of matter in the cen-
ter of accreting neutron stars is possible. The compression maybe
trigger the deconfinement transition.

With Glendenning’s realization of complex system, the non-
linear phase properties would give rise to the differences in neu-
tron star structure but not cause the physics of the star to be
different in an observable way [1]. However when our finding is
applied for neutron stars, it is directly measurable by checking
thermal radiation of the star. The thermal properties of the hybrid
stars perhaps form a separate class from neutron stars. Based on
this, we open up a new widow for the future study. We could have
the constraint of the equation of state with X-ray data of neutron
stars and hence present the signal of deconfinement phase transi-
tion in the core of neutron stars.
We here follow Glendenning’s description to present the mixed
phase matter with bulk calculation but it is insufficient to fig-
ure out the essential aspects of the phase transition due to the
screening effect and surface tension in the system, which has been
realized by Voskresensky, Yasuhira and Tatsumi [20]. The finite-
size effect leads to the emergence of inhomogeneous structure
of the mixed phase with various geometrical shapes, called pasta
phase [21]. In the future, our mechanism should be advanced un-
der the circumstance of pasta phase to fit the realistic equation of
state of neutron star matter.
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