3,366 research outputs found
IsaB Inhibits Autophagic Flux to Promote Host Transmission of Methicillin-Resistant Staphylococcus aureus.
Methicillin-resistant Staphylococcus aureus (MRSA) has emerged as a major nosocomial pathogen that is widespread in both health-care facilities and in the community at large, as a result of direct host-to-host transmission. Several virulence factors are associated with pathogen transmission to naive hosts. Immunodominant surface antigen B (IsaB) is a virulence factor that helps Staphylococcus aureus to evade the host defense system. However, the mechanism of IsaB on host transmissibility remains unclear. We found that IsaB expression was elevated in transmissible MRSA. Wild-type isaB strains inhibited autophagic flux to promote bacterial survival and elicit inflammation in THP-1 cells and mouse skin. MRSA isolates with increased IsaB expression showed decreased autophagic flux, and the MRSA isolate with the lowest IsaB expression showed increased autophagic flux. In addition, recombinant IsaB rescued the virulence of the isaB deletion strain and increased the group A streptococcus (GAS) virulence in vivo. Together, these results reveal that IsaB diminishes autophagic flux, thereby allowing MRSA to evade host degradation. These findings suggest that IsaB is a suitable target for preventing or treating MRSA infection
Optically-Nonactive Assorted Helices Array with Interchangeable Magnetic/Electric Resonance
We report here the designing of optically-nonactive metamaterial by
assembling metallic helices with different chirality. With linearly polarized
incident light, pure electric or magnetic resonance can be selectively
realized, which leads to negative permittivity or negative permeability
accordingly. Further, we show that pure electric or magnetic resonance can be
interchanged at the same frequency band by merely changing the polarization of
incident light for 90 degrees. This design demonstrates a unique approach to
construct metamaterial.Comment: 15 pages, 4 figure
Noninvasive prediction of Blood Lactate through a machine learning-based approach.
We hypothesized that blood lactate concentration([Lac]blood) is a function of cardiopulmonary variables, exercise intensity and some anthropometric elements during aerobic exercise. This investigation aimed to establish a mathematical model to estimate [Lac]blood noninvasively during constant work rate (CWR) exercise of various intensities. 31 healthy participants were recruited and each underwent 4 cardiopulmonary exercise tests: one incremental and three CWR tests (low: 35% of peak work rate for 15âmin, moderate: 60% 10âmin and high: 90% 4âmin). At the end of each CWR test, venous blood was sampled to determine [Lac]blood. 31 trios of CWR tests were employed to construct the mathematical model, which utilized exponential regression combined with Taylor expansion. Good fitting was achieved when the conditions of low and moderate intensity were put in one model; high-intensity in another. Standard deviation of fitting error in the former condition is 0.52; in the latter is 1.82âmmol/liter. Weighting analysis demonstrated that, besides heart rate, respiratory variables are required in the estimation of [Lac]blood in the model of low/moderate intensity. In conclusion, by measuring noninvasive cardio-respiratory parameters, [Lac]blood during CWR exercise can be determined with good accuracy. This should have application in endurance training and future exercise industry
Replication Attack Detection in Mobile Wireless Sensor Network with LEACH-ME Routing Protocol
Because the Wireless Sensor Network (WSN) nodes are low-cost devices, attackers may capture some nodes in this network and then duplicate these nodes to eavesdrop the transmitted messages or even control the network gradually without difficulty. This is the so-called node replication attack. This type of attacks could cause the huge threat to information security of WSNs. Therefore, in this paper, we would like to suggest a detection approach which can offer good performance but with higher energy consumption. Hence, it can provide an alternative solution for some specific applications that need better precision but do not care energy or lifespan too much
Charge Transfer in Slow Collisions of Câ¶âș with H Below 1 KeV / Amu
We reexamine the charge transfer cross sections for Câ¶âș + H collisions for energies below 1 keV / amu using a fully quantum mechanical approach, based on the hyperspherical close-coupling method. Whereas most previous theoretical and experimental data agree well for the dominant charge transfer to the Câ”âș(n=4) states, there is significant disagreement among the theories for the transition to the weaker n=5 states. Using the present quantum mechanical calculations we analyze the origin of the discrepancy among these previous calculations. We further extend the calculations to collision energies down to about 1 eV and show that electron capture to the n=5 states begins to dominate over the n=4 states
Discovery of serum biomarkers of alcoholic fatty liver in a rodent model: C-reactive protein
<p>Abstract</p> <p>Background</p> <p>Excessive consumption of alcohol contributes to alcoholic liver disease. Fatty liver is the early stage of alcohol-related liver disease. The aim of this study was to search for specific serological biomarkers of alcoholic fatty liver (AFL) compared to healthy controls, non-alcoholic fatty liver (NAFL) and liver fibrosis in a rodent model.</p> <p>Methods</p> <p>Serum samples derived from animals with AFL, NAFL, or liver fibrosis were characterized and compared using two-dimensional differential gel electrophoresis. A matrix-assisted laser desorption ionization-time of flight tandem mass spectrometer in conjunction with mascot software was used for protein identification. Subsequently, Western blotting and flexible multi-analyte profiling were used to measure the expressions of the putative biomarkers present in the serum of animals and clinical patients.</p> <p>Results</p> <p>Eight differential putative biomarkers were identified, and the two most differentiated proteins, including upregulated C-reactive protein (CRP) and downregulated haptoglobin (Hp), were further investigated. Western blotting validated that CRP was dramatically higher in the serum of AFL compared to healthy controls and other animals with liver disease of NAFL or liver fibrosis (<it>p </it>< 0.05). Moreover, we found that CRP and Hp were both lower in liver fibrosis of TAA-induced rats and clinical hepatitis C virus-infected patients.</p> <p>Conclusion</p> <p>The results suggest that increased levels of CRP are an early sign of AFL in rats. The abnormally elevated CRP induced by ethanol can be used as a biomarker to distinguish AFL from normal or otherwise diseased livers.</p
Side-Effect Localization for Lazy, Purely Functional Languages via Aspects
Many side-effecting programming activities, such as profiling and tracing,
can be formulated as crosscutting concerns and be framed as side-effecting aspects in the aspect-oriented programming paradigm. The benefit gained from this separation of concerns is particularly evident in purely functional programming, as adding such aspects using techniques such as monadification will generally lead to crosscutting changes. This paper presents an approach to provide side-effecting aspects for lazy purely functional languages in a user transparent fashion. We propose a simple yet direct state manipulation construct for developing side-effecting aspects and devise a
systematic monadification scheme to translate the woven code to monadic style purely functional code. Furthermore, we present a static and dynamic semantics of the aspect programs and reason about the correctness of our monadification scheme with respect to them
- âŠ