2,073 research outputs found

    Solving multiple-criteria R&D project selection problems with a data-driven evidential reasoning rule

    Full text link
    In this paper, a likelihood based evidence acquisition approach is proposed to acquire evidence from experts'assessments as recorded in historical datasets. Then a data-driven evidential reasoning rule based model is introduced to R&D project selection process by combining multiple pieces of evidence with different weights and reliabilities. As a result, the total belief degrees and the overall performance can be generated for ranking and selecting projects. Finally, a case study on the R&D project selection for the National Science Foundation of China is conducted to show the effectiveness of the proposed model. The data-driven evidential reasoning rule based model for project evaluation and selection (1) utilizes experimental data to represent experts' assessments by using belief distributions over the set of final funding outcomes, and through this historic statistics it helps experts and applicants to understand the funding probability to a given assessment grade, (2) implies the mapping relationships between the evaluation grades and the final funding outcomes by using historical data, and (3) provides a way to make fair decisions by taking experts' reliabilities into account. In the data-driven evidential reasoning rule based model, experts play different roles in accordance with their reliabilities which are determined by their previous review track records, and the selection process is made interpretable and fairer. The newly proposed model reduces the time-consuming panel review work for both managers and experts, and significantly improves the efficiency and quality of project selection process. Although the model is demonstrated for project selection in the NSFC, it can be generalized to other funding agencies or industries.Comment: 20 pages, forthcoming in International Journal of Project Management (2019

    Electronic Tuning of Mixed Quinoidal‐Aromatic Conjugated Polyelectrolytes: Direct Ionic Substitution on Polymer Main‐Chains

    Get PDF
    The synthesis of conjugated polymers with ionic substituents directly bound to their main chain repeat units is a strategy for generating strongly electron-accepting conjugated polyelectrolytes, as demonstrated through the synthesis of a series of ionic azaquinodimethane (iAQM) compounds. The introduction of cationic substituents onto the quinoidal para-azaquinodimethane (AQM) core gives rise to a strongly electron-accepting building block, which can be employed in the synthesis of ionic small molecules and conjugated polyelectrolytes (CPEs). Electrochemical measurements alongside theoretical calculations indicate notably low-lying LUMO values for the iAQMs. The optical band gaps measured for these compounds are highly tunable based on structure, ranging from 2.30 eV in small molecules down to 1.22 eV in polymers. The iAQM small molecules and CPEs showcase the band gap reduction effects of combining the donor-acceptor strategy with the bond-length alternation reduction strategy. As a demonstration of their utility, the iAQM CPEs so generated were used as active agents in photothermal therapy

    Biomechanics Characteristics of New Type Artificial Hip Joint

    Get PDF
    The structure, geometrical shape and material are the three main parts of the prostheses. This research focuses on the geometrical shape analysis. The geometrical shape of human natural femoral head is similar to the ellipse, but, the artificial femoral head is rotundity shape. There is difference between ellipse and rotundity femoral head. Two models are developed and analyzed in this paper under same conditions used Finite element analysis method. Based on the calculation results, it is shown that the ellipse shape femoral head have the similar characteristics to the natural joint than rotundity model. The ellipse has the more lowness stress distribution area and more small distortion magnitude than rotundity shape artificial femoral head. It should have the more kind effect replace rotundity femoral head with ellipse shape artificial formal head. Keywords: hip joint; prosthesis design; finite element analysis; biomechanic

    Ephrinb3 modulates hippocampal neurogenesis and the reelin signaling pathway in a pilocarpineinduced model of epilepsy

    Get PDF
    EphrinB3 is important in the regulation of cell proliferation, differentiation and migration via cellcell contact, and can activate the reelin pathway during brain development. However, the effect of ephrinB3 on hippocampal neurogenesis and the reelin pathway in epilepsy remains to be fully elucidated. In the present study, the expression of ephrinB3 in pilocarpineinduced status epilepticus (SE) rats was investigated. SYBR Greenbased reverse transcriptionquantitative polymerase chain reaction analysis, immunohistochemical labeling and western blot analysis were used to detect the gene and protein expression levels of ephrinB3 and reelin pathway proteins. Immunofluorescence staining of doublecortin (DCX) was utilized to analyze hippocampal neurogenesis. The data revealed that the mRNA and protein expression levels of ephrinB3 in the hippocampus decreased during the spontaneous seizure period. Of note, the expression of reelin and its downstream phosphorylation disabled 1 (pDab1) were also notably decreased during the spontaneous seizure period, which showed similar dynamic changes as in the expression of ephrinB3. In addition, it was found that the number of DCXlabeled neuronal progenitor cells was increased in the hippocampus following pilocarpineinduced SE. To further clarify the role of ephrinB3 in neurogenesis and the reelin pathway in epilepsy, an exogenous ephrinB3 clustering stimulator, EphB3Fc, was infused into the bilateral hippocampus of the rats postSE. Following EphB3Fc injection, it was found that the expression levels of reelin and pDab1 were significantly increased in the epileptic rats following EphB3Fc injection. The number of DCXlabeled neuronal progenitor cells was reduced in the hippocampus of the epileptic rats. Furthermore, the intensity and frequency of spontaneous recurrent seizures and electroencephalographic seizures were attenuated in the epileptic rats postinjection. These results demonstrated the critical role of ephrinB3 in regulation of the reelin pathway and hippocampal neurogenesis in epilepsy, providing experimental evidence that ephrinB3 functions as a potential protective factor in epilepsy, at least in animals

    Green Refining of Waste Lubricating Oil: A China Perspective

    Get PDF
    Presently, many regeneration processes of waste lubricating oil, such as catalytic hydrogenation, are available. However, some of these processes are highly costly and not suitable for Chinese economic conditions, and some may produce contaminated impurities such as acid slag, which cannot meet environmental protection requirements. This study aims to develop a green process for the regeneration of waste lubricating oil into a base oil, which should meet the requirements of green chemistry, have the characteristics of simple operation, low cost, less pollution and high recovery rate, and turn wastes into renewable resources. The new process developed via this research has three stages. First, mechanical and large particle impurities in the waste lubricating oil were removed by pretreatment. Second, most of the colloid and asphaltene were removed by thermal extraction and sedimentation. Finally, the activated bleaching earth was used to further purify the waste lubricating oil. The performance evaluation of the finally obtained lubricating base oil conformed to the standard of the HVI-100 lubricating oil. The total recovery rate of the process was about 63.5%.Citation: Wu, J., Li, B., Wang, W., Yang, S., Liu, P., Yang, C., and Ding, Y. (2019). Green Refining of Waste Lubricating Oil: A China Perspective. Trends in Renewable Energy, 5, 165-180. DOI: 10.17737/tre.2019.5.2.008

    Quantized vortices in a rotating Bose-Einstein condensate with spatiotemporally modulated interaction

    Full text link
    We present theoretical analysis and numerical studies of the quantized vortices in a rotating Bose-Einstein condensate with spatiotemporally modulated interaction in harmonic and anharmonic potentials, respectively. The exact quantized vortex and giant vortex solutions are constructed explicitly by similarity transformation. Their stability behavior has been examined by numerical simulation, which shows that a new series of stable vortex states (defined by radial and angular quantum numbers) can be supported by the spatiotemporally modulated interaction in this system. We find that there exist stable quantized vortices with large topological charges in repulsive condensates with spatiotemporally modulated interaction. We also give an experimental protocol to observe these vortex states in future experiments
    corecore