10,878 research outputs found

    Quantized H-Infinity control for nonlinear stochastic time-delay systems with missing measurements

    Get PDF
    This is the post-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2012 IEEEIn this paper, the quantized H∞ control problem is investigated for a class of nonlinear stochastic time-delay network-based systems with probabilistic data missing. A nonlinear stochastic system with state delays is employed to model the networked control systems where the measured output and the input signals are quantized by two logarithmic quantizers, respectively. Moreover, the data missing phenomena are modeled by introducing a diagonal matrix composed of Bernoulli distributed stochastic variables taking values of 1 and 0, which describes that the data from different sensors may be lost with different missing probabilities. Subsequently, a sufficient condition is first derived in virtue of the method of sector-bounded uncertainties, which guarantees that the closed-loop system is stochastically stable and the controlled output satisfies H∞ performance constraint for all nonzero exogenous disturbances under the zero-initial condition. Then, the sufficient condition is decoupled into some inequalities for the convenience of practical verification. Based on that, quantized H∞ controllers are designed successfully for some special classes of nonlinear stochastic time-delay systems by using Matlab linear matrix inequality toolbox. Finally, a numerical simulation example is exploited to show the effectiveness and applicability of the results derived.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the U.K. under Grant GR/S27658/01, the Leverhulme Trust of the U.K., the Royal Society of the U.K., the National Natural Science Foundation of China under Grants 61028008, 61134009, 61104125, 60974030, and 61074016, and the Alexander von Humboldt Foundation of Germany

    On one-sided filters for spectral Fourier approximations of discontinuous functions

    Get PDF
    The existence of one-sided filters, for spectral Fourier approximations of discontinuous functions, which can recover spectral accuracy up to discontinuity from one side, was proved. A least square procedure was also used to construct such a filter and test it on several discontinuous functions numerically

    Non-oscillatory spectral Fourier methods for shock wave calculations

    Get PDF
    A non-oscillatory spectral Fourier method is presented for the solution of hyperbolic partial differential equations. The method is based on adding a nonsmooth function to the trigonometric polynomials which are the usual basis functions for the Fourier method. The high accuracy away from the shock is enhanced by using filters. Numerical results confirm that no oscillations develop in the solution. Also, the accuracy of the spectral solution of the inviscid Burgers equation is shown to be higher than a fixed order
    corecore