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NON-OSCILLATORY SPECTRAL FOURIER METHODS 

FOR SHOCK WAVE CALCULATIONS 

Wei Cai, David Gottlieb, and Chi-Wang Shu 

Division of Applied Mathematics 

Brown University 

Providence, RI 02912 

ABSTRACT 

In this paper, we present a non-oscillatory spectral Fourier method for the solution 

of hyberbolic partial differential equations. The method is based on adding a nonsmooth 

function to the trigonometric polynomials which are the usual basis functions for the 

Fourier method. The high accuracy away from the shock is enhanced by using filters. 

Numerical results confirm that no oscillations develop in the solution. Also, the accuracy 

of the spectral solution of the inviscid Burgers equation is shown to be higher than a fixed 

order .. 
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1. INTRODUCTION 

In this paper, we discuss shock capturing techniques using spectral methods. In par­

ticular, we would like to present a nonoscillatory version of the spectral Fourier method 

when applied to a nonlinear hyperbolic equation. The main difficulty in applying spec-

tral methods to discontinuous problems is of course the Gibbs phenomenon. In fact, this 

problem exists even in the approximation level. It is well-known that if a discontinuous 

function I(x) is approximated by its finite Fourier series PNI 

N 
""" A ikz PNI = L., Ike , (lola) 

k=-N 

(LIb) 

then the order of convergence of PN I to I is only 0 (ir) for each fixed point. Moreover, 

PNI has oscillations of order 1 in a neighborhood of 0(1) of the discontinuity. 

In the applications, we usually have piecewise COO functions, and in this paper we will 

consider only those functions. It is known that it is possible to improve the accuracy of the 

approximation away from the shocks. There are currently two methods (see [7]) that are 

being used. The first amounts to modifying the Fourier coefficients by multiplying them 

by a decreasing function u(k). Some of the commonly used filters are 

Uk = e-a (k-;Q)2m Ikl 2: ko 
(1.2) 

Ikl < ko. 

The second method [IJ is based on convoluting the approximation with an appropriate Goo 

function t/J(x, y) such that 

(1.3) 

While both (1.2) and (1.3) are effective away from the discontinuity, they do not eliminate 

the Gibbs phenomenon in the neighborhood of the shock. This is very important for the 

stability of the spectral method when applied to partial differential equations. In fact in 

Section 2 we show that the total variation of PN I grows like log N. It is easily shown that 

this is the case also for the filters in (1.2). 
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In Section 2, we show that by adding a sawtooth function to the basis functions eib: 

one can control the Gibbs phenomenon. This in conjunction with the filters (1.2)-(1.3) 

yields a high order nonoscillatory approximation to a piecewise Goo function. In Theorem 

2, we prove that the total variation of the new approximation converges to that of the 

approximated function. We also prove that the convergence for the new approximation in 

L1 norm is one order higher. 

Many modern nonlinear schemes for the solution of the conservation equation 

Ut+!(U):z;=O (1.4) 

are based on two distinct steps, namely reconstruction and time marching. We use the cell 

averaging formulation to rewrite (1.4) as 

(1.5) 

where 

!(U;+k) = !(u(xj+k))' 

The first step, then, is to reconstruct the function u(x) from u(x). It is here that we 

use the nonoscillatory technique developed in Section 2. For the second step, the time 

marching, we use the third order Runge-Kutta scheme developed in [12]. We try to avoid 

any modification technique (like the application of limiters) in order to avoid deterioration 

of the overall accuracy. 

We demonstrate in the last section that the procedure applied to several model problems 

yields indeed nonoscillatory results with an order of accuracy which is higher than algebraic 

away from the discontinuity. 

2. NON-OSCILLATORY APPROXIMATION 

In this section, we suggest a method to reconstruct a nonoscillatory approximation to a 

piecewise GOO periodic function from its first N Fourier coefficients. The approximation is 
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nonoscillatory in the sense that the total variation of the approximation converges to the 

total variation of the approximated function. Moreover, the approximation convergences 

in the maximum norm outside a small interval around the point of discontinuity. Applying 

the filters (1.2)-(1.3) will increase the order of convergence away from the discontinuity, 

thus providing a nonoscillatory spectral approximation. 

For simplicity, assume that u(x), 0::; x ::; 271" is a periodic piecewise Coo function with 

only one point of discontinuity at X3 and denote by [u] the value of the jump of u(x) at x&, 

namely 

[u] = u(x~) - u(x;) . 
271" 

We assume also that the first 2N+1 Fourier coefficients Ul of u(x) are known 

-N::; l ::; N. 

(2.1) 

(2.2) 

The objective is to construct a non-oscillatory spectrally accurate approximation to u(x) 

from the Ul'S. We start by noting that the Fourier coefficients Ul'S contain information 

about the shock position X3 and the magnitude [u] of the shock. In fact we can state 

Lemma 1: Let u(x) be a periodic piecewise Coo function with one point of discontinuity 

Xu then for III ~ 1 and for any n > 0 

(2.3) 

Proof: Since 

we can integrate by parts to get 

" _ -ilz. u(x;) - u(x;) 1 12,," u'(x)e-ilz 

Ul - e 2 of.. + -2 of.. dx 71"% 71" 0 % 
(2.4) 

the rest is obtained by induction. This completes the proof. 
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As an example, consider the sawtooth function F(x, xa, A) defined by 

{
-x x ~ Xa 

F(x,xa,A)=A 2 . 
7r - X x> Xa 

(2.5) 

Note that the jump of the function - [F] - is A and all the derivatives are continuous 

[~:{] = 0 for k ~ 1. That means that the expansion (2.3) can be terminated after the first 

term, yielding the following results for tk - the Fourier coefficients of F(x, Xs, A) 

A e-ikz• 

/k(X s , A) = A~ Ikl ~ 1 

This example suggests that we can rewrite (2.3) as 

A • n-1 [U(k)] 1 r 1r u(n) (x)e-ilz 

Ul = ft(xs, [u]) + e-
Ilz

• E (il)k+1 + 27r 10 (il)n dx, III ~ 1. 

The order 1 oscillations in approximating u(x) by its finite Fourier sum 

N 

PNU = L uli
lz 

b=-N 

are caused by the slow convergence of 

N 

FN(X, XII' [uD = L ft(x lI , [uDeilz 

l:=-N 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

to the sawtooth function F(x, xa, [uD. Therefore, those oscillations can be eliminated by 

adding a sawtooth function to the basis of the space to which u(x) is projected. To be 

specific, we seek an expansion of the form 

VN(X) = L aleilz + L ~ e-illleilz 

Ill:5N Ill>N ,l 
(2.10) 

to approximate u(x). The 2N + 3 unknowns al(lll ~ N), A and yare deterJ?ined by the 

orthogoni'tlity condition 

Ikl ~N+2. (2.11) 

The system of equations (2.11) leads to the following conditions: 

Ill~N (2.12) 
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(where Ut are the usual Fourier coefficients of u(x), see (2.2)) and 

A -i(N+1)1I _ " 
i(N + 1) e - UN+1 

A -i(N+2)1I _ " 
i(N + 2) e - UN+2' 

Solving (2.13) for A and y one gets 

eill = (N + l)uN+1 
(N + 2)UN+2 

The sign of A is determined by (2.13). 

(2.13a) 

(2.13b) 

(2.14a) 

(2.14b) 

Note that in the expansion presented in (2.10) the second sum starts at III = N + 1. 

This is due to the fact that we make the additional basis function F(x, y, A) orthogonal to 

eikz , thus we use F(x, y, A) - FN(X, y, A) in the expansion (2.10). The procedure described 

in (2.14) is second order accurate in the location and jump of the shock. In fact, we can 

state 

Theorem 1: Let u(x) be a piecewise GOO function with one discontinuity at x •. Let y 

and A be defined in (2.14) then 

Proof: From (2.3) we get 

eill = (N + l)uN+1 
(N + 2)UN+2 

By the same token 

Iy - x3 1 = 0 (~) 

IA- [u]1 = 0 (~). 

e-i(N+1)z. [[u] + ~ + 0 ( 1 )] I[N+IJ (N+1r~ 

- e-i (N+2)z. [[u] + i(J:12) + 0 (N;1)2)] 

eiz'[1 + O(~2)]' 

" [{ [U
ll

]}2 [u']2 l! 1 IAI = (N + 1)luN+11 = [u] - (N + 1)2 + (N + 1)2 = /[u]/[1 + O(N2)]' 
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It should be noted that a better approximation to the shock location XII and its magnitude 

[u] can be obtained if we add to the basis functions a function of the form 

'" [A B 1 -illl ~ -:-+ -.-2 e 
Ill>N 1,1. (1.1.) 

(2.16) 

and extend (2.11) to Ikl ~ N + 3. In practice, however, (2.10) is enough to get a nonoscil­

latory scheme. 

In order to demonstrate that the procedure described in (2.10), (2.12), and (2.14) is 

indeed nonoscillatory we recall the definition of the total variation of a function. 

Definition: The total variation of U over [0,271"] - TV[u] - is defined as 

n 

TV[u] = sup L IU(Xi) - U(Xi-I)1 (2.17) 
i=l 

where 0 ~ Xo < Xl < ... < Xn ~ 271" is a partition of [0,271"]. The supremum is taken over 

all partitions. 

It is clear that if U'(X) eLl then 

r1r 

TV[u] = J
o 

Iu'(e) Ide. (2.18) 

If we approximate the function u(x) by its finite Fourier series PNu defined in (2.8), then 

it is well-known that the total variation of PNu need not approximate that of u. In fact, 

we can state 

Lemma 2: Let the sawtooth function F(x, 0,1) and its N Fourier series FN(X, 0, 1) be 

defined by (2.5) and (2.9), then 

TV[F] = 471" (2.19) 

TV[FN] = O(logN). (2.20) 

Proof: Equation (2.19) follows directly from the definition of total variation. As for 
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(2.20) we note that 

fo21r
IF1(x, 0, 1) Idx = fo

21r

1 ttN ilzldx 
l#;O 

r1r I sin(~ + ~)x _ 11dx 
10 sm ~x 

(2.21) 

_ 121r I sin(N + ~)x Id ( ) 
- • 1 x+ 0 1 . 

o sm2"x 

The first term on the right hand side of (2.21) is the Lebesgue constant. It is known 

([13], p. 67) that it grows like (logN). Hence (2.20). We can therefore conclude that 

TV(PNu) does not converge to TV[u]. This reflects the existence of large oscillations in 

the neighborhood of the discontinuities. 

The situation is different for VN defined in (2.10). In fact, we can state 

Theorem 2: Let u(x) be a piecewise GOO periodic function with one point of disconti­

nuity xs , and a J'ump of [uJ. Let A and y be such that 

(2.22) 
IA - [uJI = Ll2• 

Let VN be defined in (2.10), then 

logN 
TV[VNJ ~ TV[uJ + Lo---y:.r- + L1LllNIogN + L2Ll2logN (2.23) 

logN IlvN - ullLl ~ Go---y:j2 + G1LllIogN + G2 Ll2 • (2.24) 

We present the proof in a series of Lemmas in order to clarify the role of each one of the 

terms on the right hand sides of (2.23) and (2.24). 

Lemma 3: Let FN(X, a, 1) and FN(x,{3, 1) be defined by (2.6)-(2.9) and Ll = a-{3 > o. 

Then if Ll ~ iv: 
TV[FN(X, a, 1) - FN(x, (3, 1)] = O(~N log N) 

IIFN(x,a,l) - FN(x,{3,l)IILl = O(LllogN). 
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Proof: Since F N (x, a, 1), F N (x, (3, 1) are trigonometrical polynomials they are Coo func­

tions. Therefore, 

10
211" N a + {3 a - {3 = 4 ILsinl(x- --)sinl--Idx. 

o l=l 2 2 

Upon defining (Jt = sin la;P, we can rewrite (2.27) as 

1
211" N 

TV [FN(X, a, 1) - FN(X, (3, 1)] = 4 I L (Jt sin l€ld€ 
o l=l 

we note that (Jt are positive and monotone in l, (Jt-l - (Jt < O. Define now 

t 

to get 

Therefore, 

Denote now by J1, 

from (2.28) and (2.31) 

N 

L (Jt sinl€ 
l=l 

B t (€) = L sink€ 
1:=0 

N 

L(Jt(Bt (€) - B t- 1(€)) 
l=l 

N 

- L((Jl-l - (Jl)Bt- 1 + (JNBN· 
l=l 

In order to estimate J1" we first note that 

() 
. (l + 1) € sin ~ 

Bl e = sm . ---:--T' 
2 smi 
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Therefore, 

r21r r21r I sin ~I 
10 IBl(~) Id~ ~ 10 . l d~ = ILL· 
o 0 sm 2 

(2.35) 

But ILL is exactly the Lebesgue constant, therefore, 

ILL = O(lnl). (2.36) 

Since UN ~ N tl, we get 

TV[FN(x,a,l) - FN(x,,8,I)] = O(tlNlogN). 

To obtain (2.26), we follow the same arguments as above. Similar to (2.27) and (2.28) 

we have 

(2.37) 

where Ul = 7' 1 ~ l ~ N. u~s are positive and monotone in l, Ul - Ul-1 < O. If we define 

A l (l + 1) ~ sin ~ 
B l (€) = L cosk€ = cos 2 . ~. 

1:=1 sIn 2 
(2.38) 

Bo(€) = 0 

Then similar to (2.33) we have 

fo21r !FN(X, a, 1) - FN(x,,8, 1) Idx ~ 211" tl + 8ILU1 (2.39) 

where IL is defined in (2.32) with Bl replaced by Bl of (2.38). Notice that (2.35) also holds 

for Bt(x) and lUll ~ tl. (2.26) now follows from (2.35),(2.37), and(2.39). 

Lemma 4: Let FN(x,a,A) and FN(x,,8,B) be defined in (2.6}-(2.9). Denote 

(2.40) 

Then 

TV[FN(x, a, A) - FN(x,,8, B)] ~ K1tl l N log N + K2tl2log N (2.41) 

IIFN(X, a,A) - FN(x,,8,B)IILl ~ C1tl11ogN + C2tl2 (2.42) 
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Proof: 

TV[FN(x,a,A) - FN(x,,8,B)] < TV[FN(x,a,A) - FN(x,,8,A)] 

+ TV[FN(x,,8, A) - FN(x,,8, B)]. 
(2.43) 

The first term in the right hand side of (2.37) is bounded by (2.25), the second term 

N il(z-,B) 

TV[FN(x,,8,A) - FN(x,,8,B)] = TV[(A - B) L e if. ] 
t=-N 
ito 

(27f" N 
< IA - BI 10 I L eil(z-,B)ldx 

t=-N 
lto 

Similarly we have 

The first term on the right side of (2.45) is bounded by (2.26). The second term 

(2.42) follows from (2.45), (2.46), so the Lemma is proven. 

Lemma 5: Let S(x, a,A) and SN(X, a,A) be defined by 

Then 

S(x,a,A) 
00 eil(z-a) 

- A t=;;oo (if.)2 

logN 
TV[S(x,a,A) - SN(x,a,A)] $ K3~ 

10 
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(2.49) 

for K 3 , K4 independent of N. 

Proof: It is clear that 

(21r 
TV(S(x, a, A) - SN(X, a,A)) = 10 IF(x, a,A) - FN(X, a,A)ldx 

the estimates (2.48)-(2.49) follow from [13, p. 185]. 

We are ready now to prove Theorem 2. 

Proof of Theorem 2: First we prove (2.23). In view of (2.3), we can write 

u = F(x, Xa, [uD + S(x, XII' [u'D + g(x) (2.50) 

and therefore 

(2.51) 

we can also rewrite (2.10) as 

(2.52) 

hence 

or 

VN(X) [FN(x, XII' [uD - FN(X, y, A)] + [F(x, y, [uD + S(x, y, [ulD + g(x - y + xa)l 

+ [SN(X, XII, [u'D - S(x, y, lU'])] + [PNg(x) - g(x - y + Xa)] 

+ [F(x,y,A) -F(x,y,[u])]. 
(2.53) 

The second term on the right hand side is just the original function u shifted 

F(x, y, [uD + S(x, y, [u'D + g(x - y + Xa) = U(X - Y + XII) (2.54) 
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also from (2.48) 

TV[SN(X, X,,, [U']) - S(x, y, [U'])] < TV[SN(X, X,,, [U']) - SN(X, y, [U'])] 

logN + TV[SN(X,y, [u' ]) - S(X,y, [u l
])] ~ K-y:r 

and finally since g(x) is smooth enough 

K 
TV [PNg - g(x - y + x,,)] ~ N. 

Therefore from (2.53) and Lemma 4 and Lemma 5 

(2.55) 

(2.56) 

Next we prove (2.24) following the same argument above. From (2.50),(2.51), and 

(2.52) 

VN(X) - u(x) - [FN(X, x,,, [u]) - FN(x,y,A)] + [SN(X,X", lU']) - S(x, x,,, [u' ])] 
(2.58) 

+ [F(x, y, A) - F(x, x"' [u])] + [PNg(x) - g(x)]. 

The first term will be bounded by (2.42), the second term by (2.49), the third term 

(2.59) 

Now since g(x) is smooth enough, we have 

(2.60) 

Therefore from Lemma 4 , Lemma 5 and (2.59)-(2.60) 

and the proof is completed. 

Corollary: The method suggested in (2.15) yields 
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and therefore 
logN 

TV[VN] ~ TV[u] + K ~ 

logN 
IlvN - UliLl ~ CJj2. 

(2.61) 

(2.62) 

Thus, the total variation of VN converges to that of u. VN converges to u in Ll norm one 

order higer than PNu for which the rate of its convergence in Ll is Oe°J.,N). The method, 

therefore, yields a reconstruction technique which is total variation bounded. 

We conclude this section by pointing out that a similar result for collocation method 

and/or for Chebyshev expansions can be developed, along the same lines. Computationally, 

we observe similar results for Galerkin and collocation methods (see Section 4). In practice, 

collocation is used more often than Galerkin, especially when solving a nonlinear PDE 

(Section 3). 

3. NON-OSCILLATORY SPECTRAL SCHEMES 

In this section, we apply the techniques discussed in Section 2 to solve the PDE (1.4): 

(3.1a) 

(3.1b) 

If the cell average of u is defined by 

1 :1:+";" 
u(x, t) = Llx i-~ u(€, t)d€, 

2 

(3.2) 

then (3.1) can be rewritten as 

(3.3a) 

u(x, 0) = tf(x). (3.3b) 

Hence a semi-discrete conservative scheme 

(3.4) 
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will be of high order if the numerical flux Ji+~ approximates f(u(xj + ~z, t)) to high order. 

This is the approach used in the MUSCL type semi-discrete finite difference TVD and 

END schemes [10],[4]. Notice that (3.4) is a scheme for the cell averages Uj. However, 

in evaluating Ji+~' which should approximate f(u(xj + ~z, t)), we also need accurate 

point values ui+! = u(Xj + ~z, t). For finite difference schemes, the reconstruction from 

cell averages to point values is a major issue and causes difficulties, especially in several 

space dimensions [4],[5]. For spectral methods, this is very simple because u is just the 

convolution of U with the characteristic function of (Xj_!, Xj+!). To be precise, if 

N 

u(x) = L ateilz 
t=-N 

(we have suppressed the time variable t), then 

N 

u(x) = L ateitz 

t=-N 

with 

(3.5) 

(3.6) 

sin( tdZ) 
at = Utat, Ut = ld; for 0 < Ill:::; N, Uo = 1. (3.7) 

-2-

Notice that for collocation or Galerkin with D..x = :~, we have I~zl :::; i- for Ill:::; N, hence 

~ :::; Ut :::; 1. The division or multiplication by Ut thus causes no stability difficulty. We 

point out that Ut resembles the Lanczos filter [8], which in our notations is sin1!~z), and 

approaches zero when III ~ N. 

The easy transform between U and U is also valid in several space dimensions and for 

other spectral expansions (e.g., Chebyshev expansions). We omit the details. 

We now state our scheme as (3.4) with 

(3.8) 

where VN is defined by (2.10). We obtain the Fourier coefficients at of u from {Uj} by 

collocation, and obtain at of U needed in (2.10) by (3.7). The main difference between the 

conventional spectral method and the current approach is that we use the non-oscillatory 

reconstruction VN instead of the oscillatory PNU in (3.8). 
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l . 

The scheme, as it stands, can only treat a solution of not more than one discontinuity. 

However, it can be easily generalized. 

We remark that if u is smooth, (2.10) keeps spectral accuracy because A determined 

by (2.14) will be spectrally small. 

To discretize (3.4) in time we use the high order TVD Runge-Kutta methods in [12]: 

i-I 

U<i) = L[aikWk) + ,oikdtL(wk»)] , i = 1"", r 
k=O (3.9) 

U<0) = un, U<r) = un+!. 

In Section 4, we use a third order scheme r = 3 with alO = ,010 = 1, a20 = ~, ,020 = 

0, a2l = ,021 = h a30 = ~, ,030 = a31 = ,031 = 0, a32 = ,032 = ~. We use a small dt so 

that the temporal error can be neglected. These methods are TVD (or TVB) if the Euler 

forward version of (3.4)..is TVD (or TVB). In light of (2.61), we expect the total variation 

of (3.4)-(3.8)-{3.9) to grow at most at the rate of O{lnN). In practice we observe stable 

results (Section 4). 

As in the finite difference case [10] [11], we may also apply limiters to obtain provable 

TVB schemes while still keeping spectral accuracy. Let 

(3.10) 

where u;+! = VN{Xi+!' t) in (3.8). We limit the increments by 

(3.11) 

where m is the minmod function with TVB correction: 

{

at, if la11 ~ Mdx2 

m{ab"', ak) = s· min1~i9Iail, if la11 > Mdx2 and sign(ai) = sVi 
0, otherwise 

(3.12) 

with M = ~M2 or M = M; = ~(3 + 10M2)M2 . ~z2+1~::ji+I~_ujl' Here M2 is the maximum 

of IU~zl in some region around the smooth critical points of uO(x). See [11], [2]. 
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The flux (3.8) is modified to 

,.. _ -(mod) _ :;(mod) 
fi+k = h(ui + Ui ,Ui+1 - Ui+1 ) (3.13) 

where h is any monotone flux [3]. We then have the following Lemma. 

Lemma 6: Scheme (9.9)-(9.19) is TVB and formally spectrally accurate in space (i.e., 

the spatial local truncation error in smooth region is spectrally small), if the filtering (1.9) 

is used. 

Proof: The proof for TVB can be found in [10], [11]. By [1], the local truncation error 

is spectrally small in smooth regions if the limiter (3.11) returns the first argument. The 

proof that (3.11) always returns the first argument in smooth regions, including at critical 

points, can be found in [2]. 

We remark that the scheme (3.4)-(3.8)-(3.9), with or without the TVB limiting (3.11), 

yields almost identical results in our numerical examples (Section 4). This indicates the 

good stability property of the scheme (3.4)-(3.8)-(3.9). We also remark that (3.13) yields 

a TVB scheme regardless of the underlying method (3.4). However, accuracy in smooth 

regions may be lost if the underlying method (3.4) is globally oscillatory, because the 

limiters (3.11) may be enacted in smooth regions to counter-balance these spurious oscil­

lations. Numerical examples in Section 4 verify these remarks. In [9], McDonald also used 

some limiters to obtain a TVD spectral scheme. However, the accuracy in smooth regions 

is questionable due to the above remarks. 

4. NUMERICAL RESULTS 

We use several numerical examples to illustrate the methods introduced in the previous 

sections. 

Example 1: We use the approximation (2.10)-(2.12)-(2.14) on the following function 

( ) 
= { sin~, 0 :::; x :::; 0.9 

ux . z 09 2 - sm 2' . < x < 7r. 
(4.1) 
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Notice that [u(k)] =1= 0 for all k ~ o. Both Galerkin and collocation methods are tested. 

Exponential filters (1.2) with m = 4, ko = 0 is used. 

In Table 1, we list the errors of the shock location and shock strength determined by 

(2.14). Notice that the second order accuracy (2.15) is verified. 

Figure 1 displays the numerical solution of Galerkin approximation (2.10)-(2.12)-(2.14) 

with N = 64. Figure 2 is the error of the approximation on a logarithm scale. We have 

found the same kind of results for collocation approximation. In Table 2, we list the Ll 

error and numerical order in smooth region (in this case, we define the smooth region to 

be 0.8 away from discontinuity). We can see Galerkin and collocation have the same order 

of accuracy. There is no 0(1) error near the discontinuity, overall we achieve Oe~f) for 

Ll convergence, verifying (2.62). For comparison, we refer the reader to [7]. 

Example 2: We apply (2.10)-(2.12)-(2.14) on a discontinuous function which is the 

steady state solution of an astrophysics problem [6]. Figure 3 is VN in (2.10) with N = 32. 

For comparison, Figure 4 is the usual Galerkin approximation PNu with N = 32. The 

improvement is apparent. 

Example 3: We solve the Burgers' equation 

Ut + (~2)Z = 0 

u(x, 0) = 0.3 + 0.7sinx 
(4.2) 

using scheme (3.4)-{3.8)-{3.9) and (3.4)-(3.9)-(3.13). We find the shock location and 

strength with (2.14). In practice, we do not use the last part of the Fourier modes of 

the numerical solutions in (2.14). In our computation, we find that the coefficients of 

modes in the range of VN "'" N~ give us the best results in shock location and strength. 

It can be proven that in this range of modes (2.14) will not fail in the presence of possible 

transition points in the numerical solutions. The errors of (3.4)-(3.8)-(3.9) in smooth re­

gions (1.6 away from shock when it appears), at t = 0.8 (before shock), t = 1.42 (when the 

shock just develops), and t = 2.00 (after shock) are listed in Table 3. The numerical solu-
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tions are displayed in Figures 5-6. The error at t = 2.00, in logarithm scale, is displayed 

in Figure 7. 

We seem to observe higher than algebraic order in smooth regions both before and after 

the shock develops. This might be the first time super-algebraic accuracy is observed in 

a shock capturing spectral scheme solving a nonlinear PDE with shocks. The usual 0(1) 

Gibbs oscillation near the shock is also absent in all of our calculations. We also notice that 

the TVB limiter (3.11) does not change the numerical results significantly in the smooth 

region (see Table 4). Actually, we observe the same order of accuracy in the smooth region, 

comparing Table 4 with Table 3. This indicates that the scheme (3.4)-(3.8)-(3.9) is by itself 

very stable. 

Finally, we run the usual spectral scheme (Le., with VN in (3;8) replaced by PNu) with 

the TVB limiter (3.11). The errors in smooth regions (1.6 away from shock) are listed in 

Table 5 (compare with Table 4). Clearly, we only get first order in smooth regions after 

the shock develops. This indicates that TVB limiting can make a scheme stable but may 

not preserve the accuracy. 

Example 4: 2-D Steady State. We solve a 2-dimensional scalar conservation law 

{ 

Ut + (~2)Z + uti = 0 
u(x, 0, t) = sin x 
u(O, y, t) = u(211", y, t) 

(x,y)e[O, 211"] X [-1,1] 

ye[-I, 1], t ~ O. 
(4.3) 

We know that (4.3) has a steady state solution uoo(x,y). uoo(x,y) actually will be the 

solution to (4.2) if we replace y by t and set u( x, 0) = sin x in (4.2). 

As mentioned in Section 3, (3.4)-(3.8)-(3.9) can be extended to 2-dimensional cases, we 

can use either Fourier or Chebyshev method in each of the spatial directions. To solve for 

the steady state of (4.3), we use Fourier method in x-direction and Chebyshev method in 

y-direction. The criteria we set for the steady state is that the relative Ll residue between 

two consecutive time stage to be less than 10-6
, Le., 

(4.4) 
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Figure 8 displays the profile of the steady state at y = 0.38 and y = 1.00. The solid line is 

the exact solution and the plus signs are the numerical one. 32 points in the x-direction 

and 8 points in the y-direction are used. Figure 8 is the contour plot for the numerical 

steady state solution. 
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Table 1. Errors of shock location and strength, Example 1. 

Galerkin Collocation 
Location Strength Location Strength 

N Error Order Error Order Error Order Error· Order 
8 0.15(0) 0.12(-1) 0.36(0) 0.20(-1) 

16 0.24(-1) 2.6 0.22(-2) 2.4 -0.21(0) 0.8 0.12(-1) 0.7 
32 0.49(-2) 2.3 0.48(-3) 2.2 -0.14(-1) 3.8 0.38(-2) 1.7 
64 0.11(-2) 2.1 0.11(-3) 2.1 -0.32(-2) 2.2 0.11(-2) 1.8 

128 0.26(-3) 2.1 0.27(-4) 2.1 -0.77(-3) 2.0 0.28(-3) 1.9 

Table 2. Ll Error in Region I = {Xf[O, 211"], Ix - x.1 > 0.8} and Region II = [0,211"], Example 1. 

Galerkin Collocation 
Region I Region II Region I Region II 

N Error Order Error Order Error Order Error Order 
8 0.32(-1) 0.14(0) 0.23(-1) 0.31(-1) 
16 0.32(-2) 3.30 0.75(-2) 4.27 -0.21(-2) 3.46 0.61(-2) 2.34 
32 0.24(-3) 3.75 0.17(-2) 2.11 0.23(-3) 3.20 0.17(-2) 1.79 
64 0.51(-5) 5.55 0.39(-3) 2.14 0.54(-5) 5.40 0.49(-3) 1.86 
128 0.12(-7) 8.67 0.96(-4) 2.04 0.12(-7) 8.82 0.13(-3) 1.92 

Table 3. Errors in smooth region for (4.2). At t = 0.8, the smooth region is [0,211"]. At 

t = 1.42, 2.0, the smooth region is 1.6 away from the shock. 

t = 0.8 t = 1.42 t = 2.0 
N L1 Error Order L1 Error Order L1 Error Order 
16 

0.94(-2) 0.39(-2) 0.44(-2) 
32 3.57 1.66 1.40 

0.79(-3) 0.13(-2) 0.16(-2) 
64 5.00 , 5.17 5.28 

0.25(-4) 0.35(-4) 0.42(-4) 
128 7.58 7.71 6.58 

0.13(-6) 0.16(-6) 0.44(-6) 
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Table 4. Errors in smooth regions for (4.2) of new spectral scheme with TVB limiting 

(3.11). For both t = 1.42 and 2.0, the Ll errors are taken in the region of 1.6 away from 

the shock. 

t = 1.42 t = 2.0 
N L1 Error Order L1 Error Order 
16 

0.64(-2) 0.63(-2) 
32 1.90 1.67 

0.17(-2) 0.20(-2) 
64 5.55 5.29 

0.36(-4) 0.50(-4) 
128 7.75 7.11 

0.17(-6) 0.36(-6) 

Table 5. Errors in smooth regions for (4.2) of the usual spectral scheme with TVB limiting 

(3.11). For both t = 1.42 and 2.0, the Ll errors are taken in the region of 1.6 away from 

the shock. 

t = 1.42 t = 2.0 
N L1 Error Order L1 Error Order 
16 

0.25(-1) 0.16(-1) 
32 0.98 * 

0.98(-2) 0.17(-1) 
64 1.50 1.17 

0.34(-2) 0.79(-2) 
128 0.84 0.76 

0.19(-2) 0.47(-2) 
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Fig. 1: Example 1, Galerkin approximation, solid line - exact solution, plus - numerical 

solution, N = 64. 
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Fig. 2: Example 1, Error of the Galerkin approximation on logarithm scale. 
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Fig. 3: Galerkin approximation of (2.11) with N = 32 for the steady solution of the 

astroph~sics problem [6J 

Fig. 4: Usual Galerkin approximation for the steady solution of the astrophysics prob-
Or-'-'--'-'--'-,--,-,--,-~~~~~~~~--~~ 

lem, N = 32. 
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Fig. 5: Example 3, Inviscid Burgers' equation with initial data u(x,O) = 0.3 +0.7 * 

sin{ x), tjme t = 2.0, N = 64. solid line is the exact solution, plus - numerical solution. 
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Fig. 6: Example 3, Same as Fig. 5, except time t = 4.0. 
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Fig. 7: Example 3, Inviscid Burgers' equation, u(x,O) = 0.3 + 0.7 * sin(x). Errors of 

numerical solutions at time t = 2.00 in the logarithm scale for N = 16,32,64,128. 
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Fig. 8: Example 4, Steady state solution at (a) y = 0.38 (b) y = 1.0, solid lines are the 

exact solution, plus - numerical solution. 
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Fig. 9: Example 4, Contour plot of the steady solution. 
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