12,095 research outputs found

    Towards offering more useful data reliably to mobile cloudfrom wireless sensor network

    Get PDF
    The integration of ubiquitous wireless sensor network (WSN) and powerful mobile cloud computing (MCC) is a research topic that is attracting growing interest in both academia and industry. In this new paradigm, WSN provides data to the cloud, and mobile users request data from the cloud. To support applications involving WSN-MCC integration, which need to reliably offer data that are more useful to the mobile users from WSN to cloud, this paper first identifies the critical issues that affect the usefulness of sensory data and the reliability of WSN, then proposes a novel WSN-MCC integration scheme named TPSS, which consists of two main parts: 1) TPSDT (Time and Priority based Selective Data Transmission) for WSN gateway to selectively transmit sensory data that are more useful to the cloud, considering the time and priority features of the data requested by the mobile user; 2) PSS (Priority-based Sleep Scheduling) algorithm for WSN to save energy consumption so that it can gather and transmit data in a more reliable way. Analytical and experimental results demonstrate the effectiveness of TPSS in improving usefulness of sensory data and reliability of WSN for WSN-MCC integration

    Measuring visual cortical oxygenation in diabetes using functional near-infrared spectroscopy

    Get PDF
    Aims: Diabetes mellitus affects about 6% of the world’s population, and the chronic complications of the disease may result in macro- and micro-vascular changes. The purpose of the current study was to shed light on visual cortical oxygenation in diabetic individuals. We then aimed to compare the haemodynamic response (HDR) to visual stimulation with glycaemic control, given the likelihood of diabetic individuals suffering from such macro- and micro-vascular insult. Methodology: Thirty participants took part in this explorative study, fifteen of whom had diabetes and fifteen of whom were non-diabetic controls. The HDR, measured as concentrations of oxyhaemoglobin [HbO] and deoxyhaemoglobin [HbR], to visual stimulation was recorded over the primary visual cortex (V1) using a dual-channel oximeter. The stimulus comprised a pattern-reversal checkerboard presented in a block design. Participants’ mean glycated haemoglobin (HbA1c) level (±SD) was 7.2±0.6% in the diabetic group and 5.5±0.4% in the non-diabetic group. Raw haemodynamic data were normalised to baseline, and the last 15 s of data from each ‘stimulus on’ and ‘stimulus off’ condition were averaged over seven duty cycles for each participant. Results: There were statistically significant differences in ∆[HbO] and ∆[HbR] to visual stimulation between diabetic and non-diabetic groups (p<0.05). In the diabetic group, individuals with type 1 diabetes displayed an increased [HbO] (p<0.01) and decreased [HbR] (p<0.05) compared to their type 2 counterparts. There was also a linear relationship between both ∆[HbO] and ∆[HbR] as a function of HbA1c level (p<0.0005). Conclusions: Our findings suggest that fNIRS can be used as a quantitative measure of cortical oxygenation in diabetes. Diabetic individuals have a larger HDR to visual stimulation compared to non-diabetic individuals. This increase in ∆[HbO] and decrease in ∆[HbR] appears to be correlated with HbA1c level

    ^{59}Co NMR evidence for charge ordering below T_{CO}\sim 51 K in Na_{0.5}CoO_2

    Full text link
    The CoO2_{2} layers in sodium-cobaltates Nax_{x}CoO2_{2} may be viewed as a spin S=1/2S=1/2 triangular-lattice doped with charge carriers. The underlying physics of the cobaltates is very similar to that of the high TcT_{c} cuprates. We will present unequivocal 59^{59}Co NMR evidence that below TCO51KT_{CO}\sim51 K, the insulating ground state of the itinerant antiferromagnet Na0.5_{0.5}CoO2_{2} (TN86KT_{N}\sim 86 K) is induced by charge ordering.Comment: Phys. Rev. Lett. 100 (2008), in press. 4 figure

    Relating Neutrino Masses by dilepton modes of Doubly Charged Scalars

    Full text link
    We study a model with Majorana neutrino masses generated through doubly charged scalars at two-loop level. We give explicit relationships between the neutrino masses and the same sign dilepton decays of the doubly charged scalars. In particular, we demonstrate that at the tribimaximal limit of the neutrino mixings, the absolute neutrino masses and Majorana phases can be extracted through the measurements of the dilepton modes at colliders.Comment: 14 pages, 8 figures, references added, version to be published in PR

    Non-Fermi liquid behavior with and without quantum criticality in Ce(1-x)Yb(x)CoIn(5)

    Full text link
    One of the greatest challenges to Landau's Fermi liquid theory - the standard theory of metals - is presented by complex materials with strong electronic correlations. In these materials, non-Fermi liquid transport and thermodynamic properties are often explained by the presence of a continuous quantum phase transition which happens at a quantum critical point (QCP). A QCP can be revealed by applying pressure, magnetic field, or changing the chemical composition. In the heavy-fermion compound CeCoIn5_5, the QCP is assumed to play a decisive role in defining the microscopic structure of both normal and superconducting states. However, the question of whether QCP must be present in the material's phase diagram to induce non-Fermi liquid behavior and trigger superconductivity remains open. Here we show that the full suppression of the field-induced QCP in CeCoIn5_5 by doping with Yb has surprisingly little impact on both unconventional superconductivity and non-Fermi liquid behavior. This implies that the non-Fermi liquid metallic behavior could be a new state of matter in its own right rather then a consequence of the underlying quantum phase transition.Comment: 7 pages, 5 figure

    A Comparative Study of the Parker Instability under Three Models of the Galactic Gravity

    Get PDF
    To examine how non-uniform nature of the Galactic gravity might affect length and time scales of the Parker instability, we took three models of gravity, uniform, linear and realistic ones. To make comparisons of the three gravity models on a common basis, we first fixed the ratio of magnetic pressure to gas pressure at α\alpha = 0.25, that of cosmic-ray pressure at β\beta = 0.4, and the rms velocity of interstellar clouds at asa_s = 6.4 km s1^{-1}, and then adjusted parameters of the gravity models in such a way that the resulting density scale heights for the three models may all have the same value of 160 pc. Performing linear stability analyses onto equilibrium states under the three models with the typical ISM conditions, we calculate the maximum growth rate and corresponding length scale for each of the gravity models. Under the uniform gravity the Parker instability has the growth time of 1.2×108\times10^{8} years and the length scale of 1.6 kpc for symmetric mode. Under the realistic gravity it grows in 1.8×107\times10^{7} years for both symmetric and antisymmetric modes, and develops density condensations at intervals of 400 pc for the symmetric mode and 200 pc for the antisymmetric one. A simple change of the gravity model has thus reduced the growth time by almost an order of magnitude and its length scale by factors of four to eight. These results suggest that an onset of the Parker instability in the ISM may not necessarily be confined to the regions of high α\alpha and β\beta.Comment: Accepted for publication in ApJ, using aaspp4.sty, 18 text pages with 9 figure

    Self-Similar Magnetocentrifugal Disk Winds with Cylindrical Asymptotics

    Get PDF
    We construct a two-parameter family of models for self-collimated, radially self-similar magnetized outflows from accretion disks. A flow at zero initial poloidal speed leaves the surface of a rotating disk and is accelerated and redirected toward the pole by helical magnetic fields threading the disk. At large distances from the disk, the flow streamlines asymptote to wrap around the surfaces of nested cylinders. In constrast to previous disk wind modeling, we have explicitly implemented the cylindrical asymptotic boundary condition to examine the consequences for flow dynamics. The solutions are characterized by the logarithmic gradient of the magnetic field strength and the ratios between the footpoint radius R_0 and asymptotic radius R_1 of streamlines; the Alfven radius must be found as an eigenvalue. Cylindrical solutions require the magnetic field to drop less steeply than 1/R. We find that the asymptotic poloidal speed on any streamline is typically just a few tenths of the Kepler speed at the corresponding disk footpoint. The asymptotic toroidal Alfven speed is, however, a few times the footpoint Kepler speed. We discuss the implications of the models for interpretations of observed optical jets and molecular outflows from young stellar systems. We suggest that the difficulty of achieving strong collimation in vector velocity simultaneously with a final speed comparable to the disk rotation rate argues against isolated jets and in favor of models with broader winds.Comment: 39 pages, Latex (uses AAS Latex macros), 6 eps figures, postscript preprint with embedded figures available from http://www.astro.umd.edu/~ostriker/professional/publications.html , to appear in ApJ 9/1/9
    corecore