12,095 research outputs found
Towards offering more useful data reliably to mobile cloudfrom wireless sensor network
The integration of ubiquitous wireless sensor network (WSN) and powerful mobile cloud computing (MCC) is a research topic that is attracting growing interest in both academia and industry. In this new paradigm, WSN provides data to the cloud, and mobile users request data from the cloud. To support applications involving WSN-MCC integration, which need to reliably offer data that are more useful to the mobile users from WSN to cloud, this paper first identifies the critical issues that affect the usefulness of sensory data and the reliability of WSN, then proposes a novel WSN-MCC integration scheme named TPSS, which consists of two main parts: 1) TPSDT (Time and Priority based Selective Data Transmission) for WSN gateway to selectively transmit sensory data that are more useful to the cloud, considering the time and priority features of the data requested by the mobile user; 2) PSS (Priority-based Sleep Scheduling) algorithm for WSN to save energy consumption so that it can gather and transmit data in a more reliable way. Analytical and experimental results demonstrate the effectiveness of TPSS in improving usefulness of sensory data and reliability of WSN for WSN-MCC integration
Measuring visual cortical oxygenation in diabetes using functional near-infrared spectroscopy
Aims: Diabetes mellitus affects about 6% of the world’s population, and the chronic complications of the disease may result in macro- and micro-vascular changes. The purpose of the current study was to shed light on visual cortical oxygenation in diabetic individuals. We then aimed to compare the haemodynamic response (HDR) to visual stimulation with glycaemic control, given the likelihood of diabetic individuals suffering from such macro- and micro-vascular insult.
Methodology: Thirty participants took part in this explorative study, fifteen of whom had diabetes and fifteen of whom were non-diabetic controls. The HDR, measured as concentrations of oxyhaemoglobin [HbO] and deoxyhaemoglobin [HbR], to visual stimulation was recorded over the primary visual cortex (V1) using a dual-channel oximeter. The stimulus comprised a pattern-reversal checkerboard presented in a block design. Participants’ mean glycated haemoglobin (HbA1c) level (±SD) was 7.2±0.6% in the diabetic group and 5.5±0.4% in the non-diabetic group. Raw haemodynamic data were normalised to baseline, and the last 15 s of data from each ‘stimulus on’ and ‘stimulus off’ condition were averaged over seven duty cycles for each participant.
Results: There were statistically significant differences in ∆[HbO] and ∆[HbR] to visual stimulation between diabetic and non-diabetic groups (p<0.05). In the diabetic group, individuals with type 1 diabetes displayed an increased [HbO] (p<0.01) and decreased [HbR] (p<0.05) compared to their type 2 counterparts. There was also a linear relationship between both ∆[HbO] and ∆[HbR] as a function of HbA1c level (p<0.0005).
Conclusions: Our findings suggest that fNIRS can be used as a quantitative measure of cortical oxygenation in diabetes. Diabetic individuals have a larger HDR to visual stimulation compared to non-diabetic individuals. This increase in ∆[HbO] and decrease in ∆[HbR] appears to be correlated with HbA1c level
^{59}Co NMR evidence for charge ordering below T_{CO}\sim 51 K in Na_{0.5}CoO_2
The CoO layers in sodium-cobaltates NaCoO may be viewed as
a spin triangular-lattice doped with charge carriers. The underlying
physics of the cobaltates is very similar to that of the high cuprates.
We will present unequivocal Co NMR evidence that below ,
the insulating ground state of the itinerant antiferromagnet
NaCoO () is induced by charge ordering.Comment: Phys. Rev. Lett. 100 (2008), in press. 4 figure
Relating Neutrino Masses by dilepton modes of Doubly Charged Scalars
We study a model with Majorana neutrino masses generated through doubly
charged scalars at two-loop level. We give explicit relationships between the
neutrino masses and the same sign dilepton decays of the doubly charged
scalars. In particular, we demonstrate that at the tribimaximal limit of the
neutrino mixings, the absolute neutrino masses and Majorana phases can be
extracted through the measurements of the dilepton modes at colliders.Comment: 14 pages, 8 figures, references added, version to be published in PR
Non-Fermi liquid behavior with and without quantum criticality in Ce(1-x)Yb(x)CoIn(5)
One of the greatest challenges to Landau's Fermi liquid theory - the standard
theory of metals - is presented by complex materials with strong electronic
correlations. In these materials, non-Fermi liquid transport and thermodynamic
properties are often explained by the presence of a continuous quantum phase
transition which happens at a quantum critical point (QCP). A QCP can be
revealed by applying pressure, magnetic field, or changing the chemical
composition. In the heavy-fermion compound CeCoIn, the QCP is assumed to
play a decisive role in defining the microscopic structure of both normal and
superconducting states. However, the question of whether QCP must be present in
the material's phase diagram to induce non-Fermi liquid behavior and trigger
superconductivity remains open. Here we show that the full suppression of the
field-induced QCP in CeCoIn by doping with Yb has surprisingly little
impact on both unconventional superconductivity and non-Fermi liquid behavior.
This implies that the non-Fermi liquid metallic behavior could be a new state
of matter in its own right rather then a consequence of the underlying quantum
phase transition.Comment: 7 pages, 5 figure
A Comparative Study of the Parker Instability under Three Models of the Galactic Gravity
To examine how non-uniform nature of the Galactic gravity might affect length
and time scales of the Parker instability, we took three models of gravity,
uniform, linear and realistic ones. To make comparisons of the three gravity
models on a common basis, we first fixed the ratio of magnetic pressure to gas
pressure at = 0.25, that of cosmic-ray pressure at = 0.4, and
the rms velocity of interstellar clouds at = 6.4 km s, and then
adjusted parameters of the gravity models in such a way that the resulting
density scale heights for the three models may all have the same value of 160
pc. Performing linear stability analyses onto equilibrium states under the
three models with the typical ISM conditions, we calculate the maximum growth
rate and corresponding length scale for each of the gravity models. Under the
uniform gravity the Parker instability has the growth time of 1.2
years and the length scale of 1.6 kpc for symmetric mode. Under the realistic
gravity it grows in 1.8 years for both symmetric and
antisymmetric modes, and develops density condensations at intervals of 400 pc
for the symmetric mode and 200 pc for the antisymmetric one. A simple change of
the gravity model has thus reduced the growth time by almost an order of
magnitude and its length scale by factors of four to eight. These results
suggest that an onset of the Parker instability in the ISM may not necessarily
be confined to the regions of high and .Comment: Accepted for publication in ApJ, using aaspp4.sty, 18 text pages with
9 figure
Self-Similar Magnetocentrifugal Disk Winds with Cylindrical Asymptotics
We construct a two-parameter family of models for self-collimated, radially
self-similar magnetized outflows from accretion disks. A flow at zero initial
poloidal speed leaves the surface of a rotating disk and is accelerated and
redirected toward the pole by helical magnetic fields threading the disk. At
large distances from the disk, the flow streamlines asymptote to wrap around
the surfaces of nested cylinders. In constrast to previous disk wind modeling,
we have explicitly implemented the cylindrical asymptotic boundary condition to
examine the consequences for flow dynamics. The solutions are characterized by
the logarithmic gradient of the magnetic field strength and the ratios between
the footpoint radius R_0 and asymptotic radius R_1 of streamlines; the Alfven
radius must be found as an eigenvalue. Cylindrical solutions require the
magnetic field to drop less steeply than 1/R. We find that the asymptotic
poloidal speed on any streamline is typically just a few tenths of the Kepler
speed at the corresponding disk footpoint. The asymptotic toroidal Alfven speed
is, however, a few times the footpoint Kepler speed. We discuss the
implications of the models for interpretations of observed optical jets and
molecular outflows from young stellar systems. We suggest that the difficulty
of achieving strong collimation in vector velocity simultaneously with a final
speed comparable to the disk rotation rate argues against isolated jets and in
favor of models with broader winds.Comment: 39 pages, Latex (uses AAS Latex macros), 6 eps figures, postscript
preprint with embedded figures available from
http://www.astro.umd.edu/~ostriker/professional/publications.html , to appear
in ApJ 9/1/9
- …