19,852 research outputs found

    A cascaded coding scheme for error control

    Get PDF
    A cascade coding scheme for error control is investigated. The scheme employs a combination of hard and soft decisions in decoding. Error performance is analyzed. If the inner and outer codes are chosen properly, extremely high reliability can be attained even for a high channel bit-error-rate. Some example schemes are evaluated. They seem to be quite suitable for satellite down-link error control

    Signal Recognition Particle (SRP) and SRP Receptor: A New Paradigm for Multistate Regulatory GTPases

    Get PDF
    The GTP-binding proteins or GTPases comprise a superfamily of proteins that provide molecular switches in numerous cellular processes. The “GTPase switch” paradigm, in which a GTPase acts as a bimodal switch that is turned “on” and “off” by external regulatory factors, has been used to interpret the regulatory mechanism of many GTPases for more than two decades. Nevertheless, recent work has unveiled an emerging class of “multistate” regulatory GTPases that do not adhere to this classical paradigm. Instead of relying on external nucleotide exchange factors or GTPase activating proteins to switch between the on and off states, these GTPases have the intrinsic ability to exchange nucleotides and to sense and respond to upstream and downstream factors. In contrast to the bimodal nature of the GTPase switch, these GTPases undergo multiple conformational rearrangements, allowing multiple regulatory points to be built into a complex biological process to ensure the efficiency and fidelity of the pathway. We suggest that these multistate regulatory GTPases are uniquely suited to provide spatial and temporal control of complex cellular pathways that require multiple molecular events to occur in a highly coordinated fashion

    Absorption Systems In Radio-Selected QSO Surveys

    Full text link
    Radio-selected samples of quasars with complete optical identifications offer an ideal dataset with which to investigate dust bias associated with intervening absorption systems. Here, we review our work on the Complete Optical and Radio Absorption Line System (CORALS) survey whose aim is to quantify this bias and assess the impact of dust on absorber statistics. First, we review previously published results on the number density and gas content of high column density absorbers over the redshift range 0.6 < z < 3.5. We then present the latest results from CORALS which focus on measuring the metal content of our unbiased absorber sample and an investigation of their optical--IR colours. Overall we find that although dust is unarguably present in absorption galaxies, the level appears to be low enough that the statistics of previous magnitude limited samples have not been severely affected and that the subsequent reddening of background QSOs is small.Comment: Proceedings of IAUC199, Probing Galaxies through Quasar Absorption Lines, P. R. Williams, C. Shu, and B. Menard, ed

    Quantum Information Approach to Bose-Einstein Condensate in a Tilted Double-Well System

    Full text link
    We study the ground state properties of bosons in a tilted double-well system. We use fidelity susceptibility to identify the possible ground state transitions under different tilt values. For a very small tilt (for example 101010^{-10}), two transitions are found. For a moderate tilt (for example 10310^{-3}), only one transition is found. For a large tilt (for example 10110^{-1}), no transition is found. We explain this by analyzing the spectrum of the ground state. The quantum discord and total correlation of the ground state under different tilts are also calculated to indicate those transitions. In the transition region, both quantities have peaks decaying exponentially with particle number NN. This means for a finite-size system the transition region cannot be explained by the mean-field theory, but in the large-NN limit it can be.Comment: 5 pages, 5 figures, slightly different from the published versio
    corecore