19,852 research outputs found
A cascaded coding scheme for error control
A cascade coding scheme for error control is investigated. The scheme employs a combination of hard and soft decisions in decoding. Error performance is analyzed. If the inner and outer codes are chosen properly, extremely high reliability can be attained even for a high channel bit-error-rate. Some example schemes are evaluated. They seem to be quite suitable for satellite down-link error control
Signal Recognition Particle (SRP) and SRP Receptor: A New Paradigm for Multistate Regulatory GTPases
The GTP-binding proteins or GTPases comprise a superfamily of proteins that provide molecular switches in numerous cellular processes. The “GTPase switch” paradigm, in which a GTPase acts as a bimodal switch that is turned “on” and “off” by external regulatory factors, has been used to interpret the regulatory mechanism of many GTPases for more than two decades. Nevertheless, recent work has unveiled an emerging class of “multistate” regulatory GTPases that do not adhere to this classical paradigm. Instead of relying on external nucleotide exchange factors or GTPase activating proteins to switch between the on and off states, these GTPases have the intrinsic ability to exchange nucleotides and to sense and respond to upstream and downstream factors. In contrast to the bimodal nature of the GTPase switch, these GTPases undergo multiple conformational rearrangements, allowing multiple regulatory points to be built into a complex biological process to ensure the efficiency and fidelity of the pathway. We suggest that these multistate regulatory GTPases are uniquely suited to provide spatial and temporal control of complex cellular pathways that require multiple molecular events to occur in a highly coordinated fashion
Absorption Systems In Radio-Selected QSO Surveys
Radio-selected samples of quasars with complete optical identifications offer
an ideal dataset with which to investigate dust bias associated with
intervening absorption systems. Here, we review our work on the Complete
Optical and Radio Absorption Line System (CORALS) survey whose aim is to
quantify this bias and assess the impact of dust on absorber statistics. First,
we review previously published results on the number density and gas content of
high column density absorbers over the redshift range 0.6 < z < 3.5. We then
present the latest results from CORALS which focus on measuring the metal
content of our unbiased absorber sample and an investigation of their
optical--IR colours. Overall we find that although dust is unarguably present
in absorption galaxies, the level appears to be low enough that the statistics
of previous magnitude limited samples have not been severely affected and that
the subsequent reddening of background QSOs is small.Comment: Proceedings of IAUC199, Probing Galaxies through Quasar Absorption
Lines, P. R. Williams, C. Shu, and B. Menard, ed
Quantum Information Approach to Bose-Einstein Condensate in a Tilted Double-Well System
We study the ground state properties of bosons in a tilted double-well
system. We use fidelity susceptibility to identify the possible ground state
transitions under different tilt values. For a very small tilt (for example
), two transitions are found. For a moderate tilt (for example
), only one transition is found. For a large tilt (for example
), no transition is found. We explain this by analyzing the spectrum
of the ground state. The quantum discord and total correlation of the ground
state under different tilts are also calculated to indicate those transitions.
In the transition region, both quantities have peaks decaying exponentially
with particle number . This means for a finite-size system the transition
region cannot be explained by the mean-field theory, but in the large- limit
it can be.Comment: 5 pages, 5 figures, slightly different from the published versio
Recommended from our members
Experimental study on transcritical Rankine cycle (TRC) using CO2/R134a mixtures with various composition ratios for waste heat recovery from diesel engines
A carbon dioxide (CO2) based mixture was investigated as a promising solution to improve system performance and expand the condensation temperature range of a CO2 transcritical Rankine cycle (C-TRC). An experimental study of TRC using CO2/R134a mixtures was performed to recover waste heat of engine coolant and exhaust gas from a heavy-duty diesel engine. The main purpose of this study was to investigate experimentally the effect of the composition ratio of CO2/R134a mixtures on system performance. Four CO2/R134a mixtures with mass composition ratios of 0.85/0.15, 0.7/0.3, 0.6/0.4 and 0.4/0.6 were selected. The high temperature working fluid was expanded through an expansion valve and then no power was produced. Thus, current research focused on the analysis of measured operating parameters and heat exchanger performance. Heat transfer coefficients of various heat exchangers using supercritical CO2/R134a mixtures were provided and discussed. These data may provide useful reference for cycle optimization and heat exchanger design in application of CO2 mixtures. Finally, the potential of power output was estimated numerically. Assuming an expander efficiency of 0.7, the maximum estimations of net power output using CO2/R134a (0.85/0.15), CO2/R134a (0.7/0.3), CO2/R134a (0.6/0.4) and CO2/R134a (0.4/0.6) are 5.07 kW, 5.45 kW, 5.30 kW, and 4.41 kW, respectively. Along with the increase of R134a composition, the estimation of net power output, thermal efficiency and exergy efficiency increased at first and then decreased. CO2/R134a (0.7/0.3) achieved the maximum net power output at a high expansion inlet pressure, while CO2/R134a (0.6/0.4) behaves better at low pressure
Recommended from our members
Preliminary experimental comparison and feasibility analysis of CO2/R134a mixture in Organic Rankine Cycle for waste heat recovery from diesel engines
This paper presents results of a preliminary experimental study of the Organic Rankine Cycle (ORC) using CO2/R134a mixture based on an expansion valve. The goal of the research was to examine the feasibility and effectiveness of using CO2 mixtures to improve system performance and expand the range of condensation temperature for ORC system. The mixture of CO2/R134a (0.6/0.4) on a mass basis was selected for comparison with pure CO2 in both the preheating ORC (P-ORC) and the preheating regenerative ORC (PR-ORC). Then, the feasibility and application potential of CO2/R134a (0.6/0.4) mixture for waste heat recovery from engines was tested under ambient cooling conditions. Preliminary experimental results using an expansion valve indicate that CO2/R134a (0.6/0.4) mixture exhibits better system performance than pure CO2. For PR-ORC using CO2/R134a (0.6/0.4) mixture, assuming a turbine isentropic efficiency of 0.7, the net power output estimation, thermal efficiency and exergy efficiency reached up to 5.30 kW, 10.14% and 24.34%, respectively. For the fitting value at an expansion inlet pressure of 10 MPa, the net power output estimation, thermal efficiency and exergy efficiency using CO2/R134a (0.6/0.4) mixture achieved increases of 23.3%, 16.4% and 23.7%, respectively, versus results using pure CO2 as the working fluid. Finally, experiments showed that the ORC system using CO2/R134a (0.6/0.4) mixture is capable of operating stably under ambient cooling conditions (25.2–31.5 °C), demonstrating that CO2/R134a mixture can expand the range of condensation temperature and alleviate the low-temperature condensation issue encountered with CO2. Under the ambient cooling source, it is expected that ORC using CO2/R134a (0.6/0.4) mixture will improve the thermal efficiency of a diesel engine by 1.9%
- …