85 research outputs found

    Slower-than-Light Spin-1/2 Particles Endowed with Negative Mass Squared

    Full text link
    Extending in a straightforward way the standard Dirac theory, we study a quantum mechanical wave-equation describing free spinning particles --which we propose to call "Pseudotachyons" (PT's)-- which behave like tachyons in the momentum space, but like subluminal particles (v<c) in the ordinary space. This is allowed since, as it happens in every quantum theory for spin-1/2 particles, the momentum operator (that is conserved) and the velocity operator (that is not) are independent operators, which refer to independent quantities. As a consequence, at variance with ordinary Dirac particles, for PT's the average velocity is not equal to the classical velocity, but actually to the velocity "dual" of the classical velocity. The speed of PT's is therefore smaller than the speed of light. Since a lot of experimental data seems to involve a negative mass squared for neutrinos, we suggest that these particles might be PT's, travelling, because of their very small mass, at subluminal speeds very close to c. The present theory is shown to be separately invariant under the C, P, T transformations; the covariance under Lorentz transformations is also proved. Furthermore, we derive the kinematical constraints linking 4-impulse, 4-velocity and 4-polarization of free PT'sComment: LaTeX; 20 page

    Preparing isiXhosa home language teachers for the 21st century classroom: Student teachers' experiences, challenges and reflections

    Get PDF
    The aim of the article is to identify the gaps between theory and practice in pre-service teacher training with special reference to the teaching of isiXhosa as a home language in the Further Education and Training (FET) phase (Grades 10–12) in some Western Cape high schools. The article is based on data that was collected from Postgraduate Certificate in Education (PGCE) students taking isiXhosa (home language) as one of their teaching method subjects as part of their pre-service training. The data were collected by means of an open-ended questionnaire, semi-structured interviews and an analysis of student teachers’ reflective journals. The article provides an analysis of PGCE students’ experiences and reflections on the teaching of isiXhosa as a home language in schools. It argues that if there is a gap between theory underpinning initial pre-service training and actual practice in schools, there will be no significant improvement in the teaching of isiXhosa as a home language. It concludes by proposing ways of improving both pre-service and in-service teacher education practice to develop African languages as academic or intellectual languages at school level

    What drives sound symbolism? Different acoustic cues underlie sound-size and sound-shape mappings

    Get PDF
    Sound symbolism refers to the non-arbitrary mappings that exist between phonetic properties of speech sounds and their meaning. Despite there being an extensive literature on the topic, the acoustic features and psychological mechanisms that give rise to sound symbolism are not, as yet, altogether clear. The present study was designed to investigate whether different sets of acoustic cues predict size and shape symbolism, respectively. In two experiments, participants judged whether a given consonant-vowel speech sound was large or small, round or angular, using a size or shape scale. Visual size judgments were predicted by vowel formant F1 in combination with F2, and by vowel duration. Visual shape judgments were, however, predicted by formants F2 and F3. Size and shape symbolism were thus not induced by a common mechanism, but rather were distinctly affected by acoustic properties of speech sounds. These findings portray sound symbolism as a process that is not based merely on broad categorical contrasts, such as round/unround and front/back vowels. Rather, individuals seem to base their sound-symbolic judgments on specific sets of acoustic cues, extracted from speech sounds, which vary across judgment dimensions

    Hsc70 is a novel interactor of NF-kappaB p65 in living hippocampal neurons

    Get PDF
    Klenke C, Widera D, Engelen T, et al. Hsc70 is a novel interactor of NF-kappaB p65 in living hippocampal neurons. PLoS ONE. 2013;8(6): e65280.Signaling via NF-κB in neurons depends on complex formation with interactors such as dynein/dynactin motor complex and can be triggered by synaptic activation. However, so far a detailed interaction map for the neuronal NF-κB is missing. In this study we used mass spectrometry to identify novel interactors of NF-κB p65 within the brain. Hsc70 was identified as a novel neuronal interactor of NF-κB p65. In HEK293 cells, a direct physical interaction was shown by co-immunoprecipitation and verified via in situ proximity ligation in healthy rat neurons. Pharmacological blockade of Hsc70 by deoxyspergualin (DSG) strongly decreased nuclear translocation of NF-κB p65 and transcriptional activity shown by reporter gene assays in neurons after stimulation with glutamate. In addition, knock down of Hsc70 via siRNA significantly reduced neuronal NF-κB activity. Taken together these data provide evidence for Hsc70 as a novel neuronal interactor of NF-κB p65

    Epidemic models for plants infection under mixed effects of temperature and wetness

    Full text link
    peer reviewedaudience: researcher, professional, student, popularization, otherThis paper deals with modeling and fitting for epidemic models and their applications to the field of plants disease. For this purpose, two models are proposed that are expressed as a blend of two functions which reflect the effect of the temperature and the wetness. In addition, we provide an original method to _t the proposed models by employing simple techniques that can constitute an easy-to-use tool for simulation, prediction and/or control. Moreover, the method accuracy and efficiency are evaluated for some reported works in the literature. Computational results are provided to show the validity and effectiveness of the proposed epidemic models for some plant infections

    Research teams as complex systems : implications for knowledge management

    No full text
    The recent increase in research collaboration creates the need to better understand the interaction between individual researchers and the collaborative team. The paper elaborates the conceptualisation of research teams as complex systems which emerge out of the local interactions of individual members operating in their local research groups, and which exhibit different dynamics: the local, the global dynamics, and the contextual dynamics. A model of research teams as complex systems is also introduced. This conceptualisation provides unique insights on management of distributed research teams: (a) the internal operations of some teams are more sensitive to external events than others; (b) conflicts emerge as a mismatch of management structures at the different levels in which a team operates; and (c) teams of high complexity have additional coordination needs, which can be fulfilled by the use of information and communication technologies. Recommendations are drawn for the use of a complex adaptive systems model in the field of knowledge management
    corecore