8 research outputs found

    Andes Virus Disrupts the Endothelial Cell Barrier by Induction of Vascular Endothelial Growth Factor and Downregulation of VE-Cadherin▿ †

    No full text
    Hantavirus pulmonary syndrome (HPS) and hemorrhagic fever with renal syndrome (HFRS) are severe diseases associated with hantavirus infection. High levels of virus replication occur in microvascular endothelial cells but without a virus-induced cytopathic effect. However, virus infection results in microvascular leakage, which is the hallmark of these diseases. VE-cadherin is a major component of adherens junctions, and its interaction with the vascular endothelial growth factor (VEGF) receptor, VEGF-R2, is important for maintaining the integrity of the endothelial barrier. Here we report that increased secreted VEGF and concomitant decreased VE-cadherin are seen at early times postinfection of human primary lung endothelial cells with an HPS-associated hantavirus, Andes virus. Furthermore, active virus replication results in increased permeability and loss of the integrity of the endothelial cell barrier. VEGF binding to VEGF-R2 is known to result in dissociation of VEGF-R2 from VE-cadherin and in VE-cadherin activation, internalization, and degradation. Consistent with this, we showed that an antibody which blocks VEGF-R2 activation resulted in inhibition of the Andes virus-induced VE-cadherin reduction. These data implicate virus induction of VEGF and reduction in VE-cadherin in the endothelial cell permeability seen in HPS and suggest potential immunotherapeutic targets for the treatment of the disease

    Assessment of Causes of Maternal Death in One Year at A Tertiary Centre of Central India : Trends in Maternal Mortality

    No full text
    Abstract: Background: According to the definition of maternal mortality, it is the "death of a woman while pregnant or within 42 days following termination of pregnancy, irrespective of the site and duration of pregnancy, from any cause connected to or aggravated by the pregnancy or its management but not by accidental or incidental cause". Studying maternal mortality and factors contributing to maternal deaths at Bundelkhand Medical College for a period of one year from January 2021 to December 2021 to identify causes that can be avoided and use the knowledge thereby produced to lower maternal mortality. Methods: A retrospective cross-sectional study of all maternal deaths from January to December 2021. The causes of death and the time between admission and death for each maternal death were thoroughly examined. Results: The Maternal mortality ratio in present study was found to be 357.7 per 100000 live births for the year 2021. 18 maternal deaths out of 5037 live births during our study period. Conclusion Maternal Health is an indicator of good health care services. Better services and awareness can be provided to decrease the cases of maternal deaths.   &nbsp

    Design, synthesis and biological evaluation of 2-substituted-6-[(4-substituted-1-piperidyl)methyl]-1H-benzimidazoles as inhibitors of ebola virus infection

    No full text
    International audienceNovel 2-substituted-6-[(4-substituted-1-piperidyl)methyl]-1H-benzimidazoles were designed and synthesized as Ebola virus inhibitors. The proposed structures of the new prepared benzimidazole-piperidine hybrids were confirmed based on their spectral data and CHN analyses. The target compounds were screened in vitro for their anti-Ebola activity. Among tested molecules, compounds 26a (EC50=0.93 μM, SI = 10) and 25a (EC50=0.64 μM, SI = 20) were as potent as and more selective than Toremifene reference drug (EC50 = 0.38 μM, SI = 7) against cell line. Data suggests that the mechanism by which 25a and 26a block EBOV infection is through the inhibition of viral entry at the level of NPC1. Furthermore, a docking study revealed that several of the NPC1 amino acids that participate in binding to GP are involved in the binding of the most active compounds 25a and 26a. Finally, in silico ADME prediction indicates that 26a is an idealy drug-like candidate. Our results could enable the development of small molecule drug capable of inhibiting Ebola virus, especially at the viral entry step

    Reactive Nitrogen Species-Induced Cell Death Requires Fas-Dependent Activation of c-Jun N-Terminal Kinase

    No full text
    Nitrogen dioxide is a highly toxic reactive nitrogen species (RNS) recently discovered as an inflammatory oxidant with great potential to damage tissues. We demonstrate here that cell death by RNS was caused by c-Jun N-terminal kinase (JNK). Activation of JNK by RNS was density dependent and caused mitochondrial depolarization and nuclear condensation. JNK activation by RNS was abolished in cells lacking functional Fas or following expression of a truncated version of Fas lacking the intracellular death domain. In contrast, RNS induced JNK potently in cells expressing a truncated version of tumor necrosis factor receptor 1 or cells lacking tumor necrosis factor receptor 1 (TNF-R1), illustrating a dependence of Fas but not TNF-R1 in RNS-induced signaling to JNK. Furthermore, Fas was oxidized, redistributed, and colocalized with Fas-associated death domain (FADD) in RNS-exposed cells, illustrating that RNS directly targeted Fas. JNK activation and cell death by RNS occurred in a Fas ligand- and caspase-independent manner. While the activation of JNK by RNS or FasL required FADD, the cysteine-rich domain 1 containing preligand assembly domain required for FasL signaling was not involved in JNK activation by RNS. These findings illustrate that RNS cause cell death in a Fas- and JNK-dependent manner and that this occurs through a pathway distinct from FasL. Thus, avenues aimed at preventing the interaction of RNS with Fas may attenuate tissue damage characteristic of chronic inflammatory diseases that are accompanied by high levels of RNS

    Reverse Genetics Generation of Chimeric Infectious Junin/Lassa Virus Is Dependent on Interaction of Homologous Glycoprotein Stable Signal Peptide and G2 Cytoplasmic Domains▿

    No full text
    The Arenaviridae are a diverse and globally distributed collection of viruses that are maintained primarily by rodent reservoirs. Junin virus (JUNV) and Lassa virus (LASV) can both cause significant outbreaks of severe and often fatal human disease throughout their respective areas of endemicity. In an effort to improve upon the existing live attenuated JUNV Candid1 vaccine, we generated a genetically homogenous stock of this virus from cDNA copies of the virus S and L segments by using a reverse genetics system. Further, these cDNAs were used in combination with LASV cDNAs to successfully generate two recombinant Candid1 JUNV/LASV chimeric viruses (via envelope glycoprotein [GPC] exchange). It was found that while the GPC extravirion domains were readily exchangeable, homologous stable signal peptide (SSP) and G2 transmembrane and cytoplasmic tail domains were essential for correct GPC maturation and production of infectious chimeric viruses. The switching of the JUNV and LASV G1/G2 ectodomains within the Candid1 vaccine background did not alter the attenuated phenotype of the vaccine strain in a lethal mouse model. These recombinant chimeric viruses shed light on the fundamental requirements of arenavirus GPC maturation and may serve as a strategy for the development of bivalent JUNV and LASV vaccine candidates
    corecore