432 research outputs found
An Efficient Bayesian Model Selection Approach for Interacting Quantitative Trait Loci Models With Many Effects
We extend our Bayesian model selection framework for mapping epistatic QTL in experimental crosses to include environmental effects and gene–environment interactions. We propose a new, fast Markov chain Monte Carlo algorithm to explore the posterior distribution of unknowns. In addition, we take advantage of any prior knowledge about genetic architecture to increase posterior probability on more probable models. These enhancements have significant computational advantages in models with many effects. We illustrate the proposed method by detecting new epistatic and gene–sex interactions for obesity-related traits in two real data sets of mice. Our method has been implemented in the freely available package R/qtlbim (http://www.qtlbim.org) to facilitate the general usage of the Bayesian methodology for genomewide interacting QTL analysis
Direct reaction measurements with a 132Sn radioactive ion beam
The (d,p) neutron transfer and (d,d) elastic scattering reactions were
measured in inverse kinematics using a radioactive ion beam of 132Sn at 630
MeV. The elastic scattering data were taken in a region where Rutherford
scattering dominated the reaction, and nuclear effects account for less than 8%
of the cross section. The magnitude of the nuclear effects was found to be
independent of the optical potential used, allowing the transfer data to be
normalized in a reliable manner. The neutron-transfer reaction populated a
previously unmeasured state at 1363 keV, which is most likely the
single-particle 3p1/2 state expected above the N=82 shell closure. The data
were analyzed using finite range adiabatic wave calculations and the results
compared with the previous analysis using the distorted wave Born
approximation. Angular distributions for the ground and first excited states
are consistent with the previous tentative spin and parity assignments.
Spectroscopic factors extracted from the differential cross sections are
similar to those found for the one neutron states beyond the benchmark
doubly-magic nucleus 208Pb.Comment: 22 pages, 7 figure
Reactions of a Be-10 beam on proton and deuteron targets
The extraction of detailed nuclear structure information from transfer
reactions requires reliable, well-normalized data as well as optical potentials
and a theoretical framework demonstrated to work well in the relevant mass and
beam energy ranges. It is rare that the theoretical ingredients can be tested
well for exotic nuclei owing to the paucity of data. The halo nucleus Be-11 has
been examined through the 10Be(d,p) reaction in inverse kinematics at
equivalent deuteron energies of 12,15,18, and 21.4 MeV. Elastic scattering of
Be-10 on protons was used to select optical potentials for the analysis of the
transfer data. Additionally, data from the elastic and inelastic scattering of
Be-10 on deuterons was used to fit optical potentials at the four measured
energies. Transfers to the two bound states and the first resonance in Be-11
were analyzed using the Finite Range ADiabatic Wave Approximation (FR-ADWA).
Consistent values of the spectroscopic factor of both the ground and first
excited states were extracted from the four measurements, with average values
of 0.71(5) and 0.62(4) respectively. The calculations for transfer to the first
resonance were found to be sensitive to the size of the energy bin used and
therefore could not be used to extract a spectroscopic factor.Comment: 16 Pages, 10 figure
Statistical Fluctuations of Electromagnetic Transition Intensities in pf-Shell Nuclei
We study the fluctuation properties of E2 and M1 transition intensities among
T=0,1 states of A = 60 nuclei in the framework of the interacting shell model,
using a realistic effective interaction for pf-shell nuclei with a Ni56 as a
core. It is found that the B(E2) distributions are well described by the
Gaussian orthogonal ensemble of random matrices (Porter-Thomas distribution)
independently of the isobaric quantum number T_z. However, the statistics of
the B(M1) transitions is sensitive to T_z: T_z=1 nuclei exhibit a Porter-Thomas
distribution, while a significant deviation from the GOE statistics is observed
for self-conjugate nuclei (T_z=0).Comment: 8 pages, latex, 3 figures (ps format
19Ne levels studied with the 18F(d,n)19Ne\u3csup\u3e*\u3c/sup\u3e(18F+p) reaction
A good understanding of the level structure of 19Ne around the proton threshold is critical to estimating the destruction of long-lived 18F in novae. Here we report the properties of levels in 19Ne in the excitation energy range of 6.9 ≤ Ex ≤ 8.4 MeV studied via the proton-transfer 18F(d,n)Ne* reaction at the Holifield Radioactive Ion Beam Facility. The populated 19Ne levels decay by breakup into p+18F and α+15O particles. The results presented in this manuscript are those of levels that are simultaneously observed from the breakup into both channels. An s-wave state is observed at 1468 keV above the proton threshold, which is a potential candidate for a predicted broad Jπ = 1/2+ state. The proton and α partial widths are deduced to be Γp = 228 ± 50 keV and Γα = 130 ± 30 keV for this state. © 2012 American Physical Society
Recombination rate and selection strength in HIV intra-patient evolution
The evolutionary dynamics of HIV during the chronic phase of infection is
driven by the host immune response and by selective pressures exerted through
drug treatment. To understand and model the evolution of HIV quantitatively,
the parameters governing genetic diversification and the strength of selection
need to be known. While mutation rates can be measured in single replication
cycles, the relevant effective recombination rate depends on the probability of
coinfection of a cell with more than one virus and can only be inferred from
population data. However, most population genetic estimators for recombination
rates assume absence of selection and are hence of limited applicability to
HIV, since positive and purifying selection are important in HIV evolution.
Here, we estimate the rate of recombination and the distribution of selection
coefficients from time-resolved sequence data tracking the evolution of HIV
within single patients. By examining temporal changes in the genetic
composition of the population, we estimate the effective recombination to be
r=1.4e-5 recombinations per site and generation. Furthermore, we provide
evidence that selection coefficients of at least 15% of the observed
non-synonymous polymorphisms exceed 0.8% per generation. These results provide
a basis for a more detailed understanding of the evolution of HIV. A
particularly interesting case is evolution in response to drug treatment, where
recombination can facilitate the rapid acquisition of multiple resistance
mutations. With the methods developed here, more precise and more detailed
studies will be possible, as soon as data with higher time resolution and
greater sample sizes is available.Comment: to appear in PLoS Computational Biolog
The magic nature of 132Sn explored through the single-particle states of 133Sn
Atomic nuclei have a shell structure where nuclei with 'magic numbers' of
neutrons and protons are analogous to the noble gases in atomic physics. Only
ten nuclei with the standard magic numbers of both neutrons and protons have so
far been observed. The nuclear shell model is founded on the precept that
neutrons and protons can move as independent particles in orbitals with
discrete quantum numbers, subject to a mean field generated by all the other
nucleons. Knowledge of the properties of single-particle states outside nuclear
shell closures in exotic nuclei is important for a fundamental understanding of
nuclear structure and nucleosynthesis (for example the r-process, which is
responsible for the production of about half of the heavy elements). However,
as a result of their short lifetimes, there is a paucity of knowledge about the
nature of single-particle states outside exotic doubly magic nuclei. Here we
measure the single-particle character of the levels in 133Sn that lie outside
the double shell closure present at the short-lived nucleus 132Sn. We use an
inverse kinematics technique that involves the transfer of a single nucleon to
the nucleus. The purity of the measured single-particle states clearly
illustrates the magic nature of 132Sn.Comment: 19 pages, 5 figures and 4 table
Universal Predictions for Statistical Nuclear Correlations
We explore the behavior of collective nuclear excitations under a
multi-parameter deformation of the Hamiltonian. The Hamiltonian matrix elements
have the form , with a
parametric correlation of the type . The studies are done in both the regular and chaotic regimes of the
Hamiltonian. Model independent predictions for a wide variety of correlation
functions and distributions which depend on wavefunctions and energies are
found from parametric random matrix theory and are compared to the nuclear
excitations. We find that our universal predictions are observed in the nuclear
states. Being a multi-parameter theory, we consider general paths in parameter
space and find that universality can be effected by the topology of the
parameter space. Specifically, Berry's phase can modify short distance
correlations, breaking certain universal predictions.Comment: Latex file + 12 postscript figure
Genetic Drift of HIV Populations in Culture
Populations of Human Immunodeficiency Virus type 1 (HIV-1) undergo a surprisingly large amount of genetic drift in infected patients despite very large population sizes, which are predicted to be mostly deterministic. Several models have been proposed to explain this phenomenon, but all of them implicitly assume that the process of virus replication itself does not contribute to genetic drift. We developed an assay to measure the amount of genetic drift for HIV populations replicating in cell culture. The assay relies on creation of HIV populations of known size and measurements of variation in frequency of a neutral allele. Using this assay, we show that HIV undergoes approximately ten times more genetic drift than would be expected from its population size, which we defined as the number of infected cells in the culture. We showed that a large portion of the increase in genetic drift is due to non-synchronous infection of target cells. When infections are synchronized, genetic drift for the virus is only 3-fold higher than expected from its population size. Thus, the stochastic nature of biological processes involved in viral replication contributes to increased genetic drift in HIV populations. We propose that appreciation of these effects will allow better understanding of the evolutionary forces acting on HIV in infected patients
- …