2 research outputs found

    Recrystallization on Alkaline Treated Zeolites in the Presence of Pore-Directing Agents

    No full text
    In previous works aiming at understanding the mesoporous network after alkaline treatment in the presence of organic additives, conventional bulk characterization techniques led to the conclusion that the dissolved zeolite does not undergo any kind of recrystallization [Verboekend, D., Cryst. Growth. Des. 2013, 13, 5025−5035]. Here for the first time, we demonstrate using the data obtained from <sup>1</sup>H and <sup>129</sup>Xe NMR spectroscopy that such recrystallization does occur, which leads to the formation of a very thin coating of the mesopore walls. This demonstration is done on a beta (BEA) zeolite treated in the presence of TPA<sup>+</sup> in an alkaline solution. The formation of a small amount of nanosized crystals or embryonic phases of silicalite-1 (MFI) zeolite is evidenced, as well as their homogeneous dispersion on the mesoporous surface of the beta zeolite. We think that these results may explain why a homogeneous mesopore size distribution is obtained, when organic pore-directing agents are used in the zeolite hierarchization process performed in an alkaline medium

    Chemically Stable Multilayered Covalent Organic Nanosheets from Covalent Organic Frameworks via Mechanical Delamination

    No full text
    A series of five thermally and chemically stable functionalized covalent organic frameworks (COFs), namely, TpPa-NO<sub>2</sub>, TpPa-F<sub>4</sub>, TpBD-(NO<sub>2</sub>)<sub>2</sub>, TpBD-Me<sub>2</sub>, and TpBD-(OMe)<sub>2</sub> were synthesized by employing the solvothermal aldehyde-amine Schiff base condensation reaction. In order to complete the series, previously reported TpPa-1, TpPa-2, and TpBD have also been synthesized, and altogether, eight COFs were fully characterized through powder X-ray diffraction (PXRD), Fourier transform IR (FT-IR) spectroscopy, <sup>13</sup>C solid-state NMR spectroscopy, and thermogravimetric analysis. These COFs are crystalline, permanently porous, and stable in boiling water, acid (9 N HCl), and base (3 N NaOH). The synthesized COFs (all eight) were successfully delaminated using a simple, safe, and environmentally friendly mechanical grinding route to transform into covalent organic nanosheets (CONs) and were well characterized via transmission electron microscopy and atomic force microscopy. Further PXRD and FT-IR analyses confirm that these CONs retain their structural integrity throughout the delamination process and also remain stable in aqueous, acidic, and basic media like the parent COFs. These exfoliated CONs have graphene-like layered morphology (delaminated layers), unlike the COFs from which they were synthesized
    corecore