43 research outputs found

    Plug in the Safety Chip: Enforcing Constraints for LLM-driven Robot Agents

    Full text link
    Recent advancements in large language models (LLMs) have enabled a new research domain, LLM agents, for solving robotics and planning tasks by leveraging the world knowledge and general reasoning abilities of LLMs obtained during pretraining. However, while considerable effort has been made to teach the robot the "dos," the "don'ts" received relatively less attention. We argue that, for any practical usage, it is as crucial to teach the robot the "don'ts": conveying explicit instructions about prohibited actions, assessing the robot's comprehension of these restrictions, and, most importantly, ensuring compliance. Moreover, verifiable safe operation is essential for deployments that satisfy worldwide standards such as ISO 61508, which defines standards for safely deploying robots in industrial factory environments worldwide. Aiming at deploying the LLM agents in a collaborative environment, we propose a queryable safety constraint module based on linear temporal logic (LTL) that simultaneously enables natural language (NL) to temporal constraints encoding, safety violation reasoning and explaining, and unsafe action pruning. To demonstrate the effectiveness of our system, we conducted experiments in VirtualHome environment and on a real robot. The experimental results show that our system strictly adheres to the safety constraints and scales well with complex safety constraints, highlighting its potential for practical utility

    Mobile Application for Travelling Activities- “Travel Mate”

    Get PDF
    The paper depicts travel guidance application on the android OS with the comparative analysis by grouping classification of mobile travel applications accessible at the moment for tourists in application stores for most popular mobile operation systems (Android and iOS). The most interesting classification is “Travel Partner” that combines “Information Resources” and “Location-Based Services” category

    Our experience with Athens protocol - simultaneous topo-guided photorefractive keratectomy followed by corneal collagen cross linking for keratoconus

    Get PDF
    Background: Corneal collagen cross linking (CXL) has become an established modality of treatment for progressive Keratoconus. Aim of the study was to analyze visual outcome, refractive status and changes in corneal curvature following simultaneous topography-guided photorefractive keratectomy (PRK) followed by corneal collagen cross-linking with riboflavin (C3R) for keratoconus in a tertiary eye care hospital.Methods: All patients underwent manifest refraction, uncorrected visual acuity (UCVA), Best corrected visual acuity (BCVA), slit lamp examination, corneal topography, ultrasound pachymetry and fundus evaluation pre operatively. 39 eyes of 27 patients with keratoconus underwent simultaneous topo guided PRK + CXL were followed up upto 6 months.Results: Mean UCVA improved from 0.81 log mar units pre-operatively to 0.43 log mar units at the end of 6 months. Preoperative BCVA was maintained or improved in 37 eyes (94.87%) and BCVA decreased by more than 1 line in 2 eyes (5.12%) post-operatively. The mean BCVA improved from 0.2 log mar units pre-operatively to 0.1 log mar units at the end of 6 months. The mean preoperative manifest refraction spherical equivalent reduced from -3.1±2.3D to -1.4±1.3D postoperatively. The mean steepest K reading decreased from 47.8±4.2D pre-op to 45±3.3D at the end of 6 month. Similarly, mean flat keratometry readings reduced significantly from 44.8±3.5D preoperatively to 42.2±2.8D at the last follow-up visit postoperatively.Conclusions: Combined topo-guided PRK+CXL is an effective approach in treating patients with keratoconus. It biomechanically stabilizes the cornea, improves the corneal contour, reduces irregular astigmatism and offers a better quality of vision

    A Prospective Multicenter Study Evaluating Learning Curves and Competence in Endoscopic Ultrasound and Endoscopic Retrograde Cholangiopancreatography Among Advanced Endoscopy Trainees: The Rapid Assessment of Trainee Endoscopy Skills (RATES) Study

    Get PDF
    Background and aims Based on the Next Accreditation System, trainee assessment should occur on a continuous basis with individualized feedback. We aimed to validate endoscopic ultrasound (EUS) and endoscopic retrograde cholangiopancreatography (ERCP) learning curves among advanced endoscopy trainees (AETs) using a large national sample of training programs and to develop a centralized database that allows assessment of performance in relation to peers. Methods ASGE recognized training programs were invited to participate and AETs were graded on ERCP and EUS exams using a validated competency assessment tool that assesses technical and cognitive competence in a continuous fashion. Grading for each skill was done using a 4-point scoring system and a comprehensive data collection and reporting system was built to create learning curves using cumulative sum analysis. Individual results and benchmarking to peers were shared with AETs and trainers quarterly. Results Of the 62 programs invited, 20 programs and 22 AETs participated in this study. At the end of training, median number of EUS and ERCP performed/AET was 300 (range 155-650) and 350 (125-500). Overall, 3786 exams were graded (EUS:1137; ERCP–biliary 2280, pancreatic 369). Learning curves for individual endpoints, and overall technical/cognitive aspects in EUS and ERCP demonstrated substantial variability and were successfully shared with all programs. The majority of trainees achieved overall technical (EUS: 82%; ERCP: 60%) and cognitive (EUS: 76%; ERCP: 100%) competence at conclusion of training. Conclusions These results demonstrate the feasibility of establishing a centralized database to report individualized learning curves and confirm the substantial variability in time to achieve competence among AETs in EUS and ERCP

    Competence in Endoscopic Ultrasound and Endoscopic Retrograde Cholangiopancreatography, From Training Through Independent Practice.

    Get PDF
    BACKGROUND & AIMS: It is unclear whether participation in competency-based fellowship programs for endoscopic ultrasound (EUS) and endoscopic retrograde cholangiopancreatography (ERCP) results in high-quality care in independent practice. We measured quality indicator (QI) adherence during the first year of independent practice among physicians who completed endoscopic training with a systematic assessment of competence. METHODS: We performed a prospective multicenter cohort study of invited participants from 62 training programs. In phase 1, 24 advanced endoscopy trainees (AETs), from 20 programs, were assessed using a validated competence assessment tool. We used a comprehensive data collection and reporting system to create learning curves using cumulative sum analysis that were shared with AETs and trainers quarterly. In phase 2, participating AETs entered data into a database pertaining to every EUS and ERCP examination during their first year of independent practice, anchored by key QIs. RESULTS: By the end of training, most AETs had achieved overall technical competence (EUS 91.7%, ERCP 73.9%) and cognitive competence (EUS 91.7%, ERCP 94.1%). In phase 2 of the study, 22 AETs (91.6%) participated and completed a median of 136 EUS examinations per AET and 116 ERCP examinations per AET. Most AETs met the performance thresholds for QIs in EUS (including 94.4% diagnostic rate of adequate samples and 83.8% diagnostic yield of malignancy in pancreatic masses) and ERCP (94.9% overall cannulation rate). CONCLUSIONS: In this prospective multicenter study, we found that although competence cannot be confirmed for all AETs at the end of training, most meet QI thresholds for EUS and ERCP at the end of their first year of independent practice. This finding affirms the effectiveness of training programs. Clinicaltrials.gov ID NCT02509416

    Competence in Endoscopic Ultrasound and Endoscopic Retrograde Cholangiopancreatography, From Training Through Independent Practice.

    Get PDF
    BACKGROUND & AIMS: It is unclear whether participation in competency-based fellowship programs for endoscopic ultrasound (EUS) and endoscopic retrograde cholangiopancreatography (ERCP) results in high-quality care in independent practice. We measured quality indicator (QI) adherence during the first year of independent practice among physicians who completed endoscopic training with a systematic assessment of competence. METHODS: We performed a prospective multicenter cohort study of invited participants from 62 training programs. In phase 1, 24 advanced endoscopy trainees (AETs), from 20 programs, were assessed using a validated competence assessment tool. We used a comprehensive data collection and reporting system to create learning curves using cumulative sum analysis that were shared with AETs and trainers quarterly. In phase 2, participating AETs entered data into a database pertaining to every EUS and ERCP examination during their first year of independent practice, anchored by key QIs. RESULTS: By the end of training, most AETs had achieved overall technical competence (EUS 91.7%, ERCP 73.9%) and cognitive competence (EUS 91.7%, ERCP 94.1%). In phase 2 of the study, 22 AETs (91.6%) participated and completed a median of 136 EUS examinations per AET and 116 ERCP examinations per AET. Most AETs met the performance thresholds for QIs in EUS (including 94.4% diagnostic rate of adequate samples and 83.8% diagnostic yield of malignancy in pancreatic masses) and ERCP (94.9% overall cannulation rate). CONCLUSIONS: In this prospective multicenter study, we found that although competence cannot be confirmed for all AETs at the end of training, most meet QI thresholds for EUS and ERCP at the end of their first year of independent practice. This finding affirms the effectiveness of training programs. Clinicaltrials.gov ID NCT02509416

    Opto-Mechanical Interactions : From Sensing To Synchronization

    Full text link
    High-quality-factor optical microresonators have emerged as a verstatile tool in studying light-matter interactions and their technological applications. They have proven to be particularly efficient sensors by transducing weak interactions, such as a minuscule change in effective refractive index, into a large optical output signal, when interrogated near their resonance frequencies. Their large quality factors and small sizes also lead to a build-up of large optical forces within the devices. These forces are a driver of high-quality mechanical oscillations of the optical resonator. The resolution of accelerometers is limited by fundamental thermomechanical noise and by extra noise added by the readout mechanism. We present a platform based on SiN optical microresonators with a high quality factor (Q), which can be used as highly sensitive displacement sensors to minimise readout noise in accelerometers. In addition, we demonstrate integration of SiN micromechanical resonators, which also potentially demonstrate very high quality factors, with a large micromachined mass, which can be used to lower thermomechanical noise in accelerometers. The SiN ring resonator with the SiN micromechanical resonators together can potentially measure acceleration with nano-g resolution over a broad bandwidth. Frequency-locking between mechanical oscillators is of scientific and technological importance. However, existing schemes to observe such behaviour are not scalable over distance. We demonstrate a scheme to couple two independent mechanical oscillators, separated in frequency by 80 kHz and situated far from each other (3.2 km), via their optomechanical interactions. Using light as the coupling medium enables this scheme to have low loss and be extended over long distances. Delay-coupled oscillators exhibit unique phenomena that are not present in systems without delayed coupling. We experimentally demonstrate mutual synchronisation of two free-running micromechanical oscillators, coupled via light with a total delay 139 ns (approximately four and a half times the mechanical oscillation time period). This coupling delay induces multiple stable states of synchronised oscillations, each with a different oscillation frequency. These states can be accessed by varying the coupling strengths. This result could enable applications in reconfigurable radio-frequency networks, and novel computing concepts
    corecore