5 research outputs found
INVESTIGATION OF ELECTROLESS Ni-P-TiO2 COMPOSITE COATING ON AA7075 FOR SURGICAL TOOLS APPLICATION
The absorption and dissemination of bacteria on the surface of medical equipment
raises the risk of human infection
The Effect of Welding Current and Electrode Force on the Heat Input, Weld Diameter, and Physical and Mechanical Properties of SS316L/Ti6Al4V Dissimilar Resistance Spot Welding with Aluminum Interlayer
Welding parameters obviously determine the joint quality during the resistance spot welding process. This study aimed to investigate the effect of welding current and electrode force on the heat input and the physical and mechanical properties of a SS316L and Ti6Al4V joint with an aluminum interlayer. The weld current values used in this study were 11, 12, and 13 kA, while the electrode force values were 3, 4, and 5 kN. Welding time and holding time remained constant at 30 cycles. The study revealed that, as the welding current and electrode force increased, the generated heat input increased significantly. The highest tensile-shear load was recorded at 8.71 kN using 11 kA of weld current and 3 kN of electrode force. The physical properties examined the formation of a brittle fracture and several weld defects on the high current welded joint. The increase in weld current also increased the weld diameter. The microstructure analysis revealed no phase transformation on the SS316L interface; instead, the significant grain growth occurred. The phase transformation has occurred on the Ti6Al4V interface. The intermetallic compound layer was also investigated in detail using the EDX (Energy Dispersive X-Ray) and XRD (X-Ray Diffraction) analyses. It was also found that both stainless steel and titanium alloy have their own fusion zone, which is indicated by the highest microhardness value
Artificial Neural Network Modeling to Predict the Effect of Milling Time and TiC Content on the Crystallite Size and Lattice Strain of Al7075-TiC Composites Fabricated by Powder Metallurgy
In the study, Al7075-TiC composites were synthesized by using a novel dual step blending process followed by cold pressing and sintering. The effect of ball milling time on the microstructure of the synthesized composite powder was characterized using X-ray diffraction measurements (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and transmission electron microscopy (TEM). Subsequently, the integrated effects of the two-stage mechanical alloying process were investigated on the crystallite size and lattice strain. The crystallite size and lattice strain of blended samples were calculated using the Scherrer method. The prediction of the crystallite size and lattice strain of synthesized composite powders was conducted by an artificial neural network technique. The results of the mixed powder revealed that the particle size and crystallite size improved with increasing milling time. The particle size of the 3 h-milled composites was 463 nm, and it reduces to 225 nm after 7 h of milling time. The microhardness of the produced composites was significantly improved with milling time. Furthermore, an artificial neuron network (ANN) model was developed to predict the crystallite size and lattice strain of the synthesized composites. The ANN model provides an accurate model for the prediction of lattice parameters of the composites
Effect of solid-electrolyte pellet density on failure of solid-state batteries
Abstract Despite the potentially higher energy density and improved safety of solid-state batteries (SSBs) relative to Li-ion batteries, failure due to Li-filament penetration of the solid electrolyte and subsequent short circuit remains a critical issue. Herein, we show that Li-filament growth is suppressed in solid-electrolyte pellets with a relative density beyond ~95%. Below this threshold value, however, the battery shorts more easily as the density increases due to faster Li-filament growth within the percolating pores in the pellet. The microstructural properties (e.g., pore size, connectivity, porosity, and tortuosity) of 75 % L i 2 S − 25 % P 2 S 5 with various relative densities are quantified using focused ion beam–scanning electron microscopy tomography and permeability tests. Furthermore, modeling results provide details on the Li-filament growth inside pores ranging from 0.2 to 2 μm in size. Our findings improve the understanding of the failure modes of SSBs and provide guidelines for the design of dendrite-free SSBs
Effect of solid-electrolyte pellet density on failure of solid-state batteries
Despite the potentially higher energy density and improved safety of solid-state batteries (SSBs) relative to Li-ion batteries, failure due to Li-filament penetration of the solid electrolyte and subsequent short circuit remains a critical issue. Herein, we show that Li-filament growth is suppressed in solid-electrolyte pellets with a relative density beyond ~95%. Below this threshold value, however, the battery shorts more easily as the density increases due to faster Li-filament growth within the percolating pores in the pellet. The microstructural properties (e.g., pore size, connectivity, porosity, and tortuosity) of [Formula: see text] with various relative densities are quantified using focused ion beam-scanning electron microscopy tomography and permeability tests. Furthermore, modeling results provide details on the Li-filament growth inside pores ranging from 0.2 to 2 μm in size. Our findings improve the understanding of the failure modes of SSBs and provide guidelines for the design of dendrite-free SSBs