27 research outputs found

    Homeostatic generative design process: Emergence of the adaptive architectural form and skin to excessive solar radiation

    Get PDF
    Natural organisms through their evolutionary developments, acquire adaptive morphological and behavioural characteristics within their environmental contexts. Through homeostatic behaviours, organisms, individually and collectively, will sustain internal and external equilibrium in face of environmental fluctuations. There is a wide range of morphological and behavioural traits across multiple species that are rooted in their homeostatic mechanisms throughout their lives. This paper presents an evolutionary design workflow with embedded homeostatic principles to generate a building cluster that is adapted to the contexts with extreme solar radiation

    Robot-Aided Fabrication of Materially Efficient Complex Concrete Assemblies

    Get PDF
    This paper presents a novel approach for the materially efficient production of doubly-curved Expanded Polystyrene (EPS) form-work for insitu concrete construction and a novel application of a patented Glass Reinforced Concrete (GRC) technology. Research objectives focus on the development of complex form-work generation and concrete application via advanced computational and robotic methods. While it is viable to produce form-work with complex geometries with advanced digital and robotic fabrication tools, a key consideration area is the reduction of form-work waste material. The research agenda explores methods of associating architectural, spatial, and structural criteria with a material-informed holistic approach. The digital and physical investigations are founded on Robotic Hot-Wire Cutting (RHWC). The geometrical and physical principles of RHWC are transformed into design inputs, whereby digital and physical tests inform each other simultaneously. Correlations are set between form-work waste optimization with the geometrical freedom and constraints of hot-wire cutting via computational methods

    Missing upper incisors: a retrospective study of orthodontic space closure versus implant

    Get PDF
    Background: The aim of this retrospective study was to compare the esthetic, periodontal, and functional outcomes of orthodontic space closure versus implant substitution in patients with missing maxillary incisors 5 years after completion of treatment. Methods: The study group consisted of ten patients treated with orthodontic space closure (six males, four females, mean age 19 ± 2.1 years at the completion of treatment) and ten patients treated with implant insertion (five males, five females, mean age 20 ± 1.4 years at the time of implant insertion). Tooth mobility, plaque index, probing depth, infraocclusion, open gingival embrasure (black triangle), and temporomandibular joint function were recorded at the 5.6 years follow-up. Self-perceived dental esthetic appearance was also evaluated through a visual analog scale (VAS) questionnaire. T-test was used to evaluate the data. Results: All patients were equally satisfied with the appearance of their teeth 5.6 ± 0.4 years after the completion of treatment. No statistically significant differences were found in relation to the VAS scores of the subjects (P < 0.857). No significant differences were found in tooth mobility, plaque index (P < 0.632), and the prevalence of signs and symptoms of temporomandibular disorders. However, significant infraocclusion was noticed in all implant patients (P < 0.001). Probing depth was also significantly higher in implant patients (P < 0.001). Conclusions: Orthodontic space closure and implant of missing maxillary incisors produced similar, well-accepted esthetic results. None of the treatments impaired temporomandibular joint function. Nevertheless, infraocclusion was evident in implant patients. Space closure patients also showed better periodontal health in comparison with implant patients

    Evolutionary Design Processes with Embedded Homeostatic Principles -Adaptation of Architectural Form and Skin to Excessive Solar Radiation

    Get PDF
    Natural systems develop efficient means of adapting to extreme environmental stresses throughout their evolutionary developments. Homeostasis is the term for the biological processes by which individual beings and collectives maintain their equilibrium in their environment, and there is a wide range of morphological and behavioral traits across multiple species that are rooted in their homeostatic mechanisms throughout their lives. To examine and reflect on the interrelations of forms, processes, and behaviors can yield useful strategies to develop architectural morphologies with significant environmental performance enhancements. An evolutionary design process with embedded homeostatic principles to generate building clusters with morphological characteristics to enhance the clusters' environmental performance in a context with excessive solar radiation has been proposed in this paper

    Application of homeostatic principles within evolutionary design processes: adaptive urban tissues

    Full text link
    Abstract Nature is a repository of dynamic and intertwined processes ready to be analyzed and simulated. Homeostasis, as a scale-free and universal biological process across all species, ensures adaptability to perturbations caused by intrinsic and extrinsic stimuli. Homeostatic processes by which species maintain their stability are strongly present through ontogenetic and phylogenetic histories of living beings. Forms and behaviors of species are imperative to their homeostatic conditions. Although biomimicry has been established for many decades, and has made significant contributions to engineering and architecture, homeostasis has rarely been part of this field of research. The experiments presented in this paper aim to examine the applicability of biological principles of homeostasis into generative design processes in order to evolve urban superblocks with a degree of morphological and behavioral adaptation to environmental changes; the objective is to eventually develop a modus operandi for the design and development of cities with embedded dynamic adaptation attributes.</jats:p

    Multi-Objective Optimisation of Urban Form: A Framework for Selecting the Optimal Solution

    Full text link
    The complexity associated with the design of urban tissues is driven by the multitude of design goals that influence urban development and growth. This complexity is amplified by the design goals being inherently conflicting, necessitating preference-based decisions within the design process—an approach that results in predetermined design solutions driven by personal biases. The utility of population-based optimisation algorithms addresses this by allowing for the examination of multiple conflicting objectives within the same design problem, negating the need for trade-off decisions between the design goals. The application of these algorithms is associated with three primary steps. The first is the formulation of the design problem, the second is the application of the algorithm, and the third is selecting the most optimal solution from the algorithm’s output. This paper examines the third step in this process, in which various methods are employed to facilitate data-driven selection mechanisms that are both objective as well as subjective in their formulation. The selection mechanisms are demonstrated on a speculative urban tissue that examines the potential of inhabiting interstitial spaces, through various morphological interventions, within the urban fabric. The results present a scalable and adaptable framework that assists designers employing multi-objective evolutionary algorithms (MOEAs) to select the optimal solution from their generated populations, a challenge commonly associated with the application of MOEAs in design

    Decoding the Architectural Genome: Multi-Objective Evolutionary Algorithms in Design

    Full text link
    The application of population-based optimization algorithms in design is heavily driven by the translation and analysis of various data sets that represent a design problem; in evolutionary-based algorithms, these data sets are illustrated through two primary data streams: genes and fitness functions. The latter is frequently examined when analyzing the algorithm’s output, and the former is comparatively less so. This paper examines the role of genomic analysis in applying multi-objective evolutionary algorithms (MOEA) in design. The results demonstrate the significance of utilizing the genetic analysis to understand better the relationships between parameters used in the design problem’s formulation and differentiate between morphological differences in the algorithmic output not commonly observed through fitness-based analyses
    corecore