192 research outputs found

    Circulatory contributors to the phenotype in hereditary hemorrhagic telangiectasia

    Get PDF
    Hereditary hemorrhagic telangiectasia (HHT) is mechanistically and therapeutically challenging, not only because of the molecular and cellular perturbations that generate vascular abnormalities, but also the modifications to circulatory physiology that result, and are likely to exacerbate vascular injury. First, most HHT patients have visceral arteriovenous malformations (AVMs). Significant visceral AVMs reduce the systemic vascular resistance: supra-normal cardiac outputs are required to maintain arterial blood pressure, and may result in significant pulmonary venous hypertension. Secondly, bleeding from nasal and gastrointestinal telangiectasia leads to iron losses of such magnitude that in most cases, diet is insufficient to meet the ‘hemorrhage adjusted iron requirement.’ Resultant iron deficiency restricts erythropoiesis, leading to anemia and further increases in cardiac output. Low iron levels are also associated with venous and arterial thromboses, elevated Factor VIII, and increased platelet aggregation to circulating 5HT (serotonin). Third, recent data highlight that reduced oxygenation of blood due to pulmonary AVMs results in a graded erythrocytotic response to maintain arterial oxygen content, and higher stroke volumes and/or heart rates to maintain oxygen delivery. Finally, HHT-independent factors such as diet, pregnancy, sepsis and other intercurrent illnesses also influence vascular structures, hemorrhage, and iron handling in HHT patients. These considerations emphasize the complexity of mechanisms that impact on vascular structures in HHT, and also offer opportunities for targeted therapeutic approaches

    Iron deficiency, ischaemic strokes, and right-to-left shunts: From pulmonary arteriovenous malformations to patent foramen ovale?

    No full text
    Has the recent identification of iron deficiency as a risk factor for ischaemic stroke in patients with pulmonary arteriovenous malformations (AVMs) unmasked a new paradigm for stroke/infarct pathogenesis? This commentary reviews evidence that spans associations between iron deficiency and ischaemic strokes, iron deficiency enhancement of platelet aggregation in response to serotonin/5HT, settings in which plasma 5HT is elevated, and clinical trial confirmation that 5HT receptor antagonists prevent ischaemic stroke. The critical leap which directs attention away from atherothrombotic events at the neurovascular wall is that ischaemic strokes due to pulmonary AVMs are attributable to compromised pulmonary capillary bed filtration of venous blood. Right-to-left shunting is continuous through pulmonary AVMs, but also occurs intermittently in approximately 30% of the general population with intracardiac shunts such as patent foramen ovale (PFO). The testable hypothesis presented is that paradoxical embolism of venous platelet-based aggregates may constitute part of the causal chain between iron deficiency and ischaemic stroke, not only in the rare disease state of pulmonary AVMs, but also in major subgroups of the general population

    Arterial oxygen content is precisely maintained by graded erythrocytotic responses in settings of high/normal serum iron levels, and predicts exercise capacity: an observational study of hypoxaemic patients with pulmonary arteriovenous malformations.

    No full text
    Oxygen, haemoglobin and cardiac output are integrated components of oxygen transport: each gram of haemoglobin transports 1.34 mls of oxygen in the blood. Low arterial partial pressure of oxygen (PaO2), and haemoglobin saturation (SaO2), are the indices used in clinical assessments, and usually result from low inspired oxygen concentrations, or alveolar/airways disease. Our objective was to examine low blood oxygen/haemoglobin relationships in chronically compensated states without concurrent hypoxic pulmonary vasoreactivity.165 consecutive unselected patients with pulmonary arteriovenous malformations were studied, in 98 cases, pre/post embolisation treatment. 159 (96%) had hereditary haemorrhagic telangiectasia. Arterial oxygen content was calculated by SaO2 x haemoglobin x 1.34/100.There was wide variation in SaO2 on air (78.5-99, median 95)% but due to secondary erythrocytosis and resultant polycythaemia, SaO2 explained only 0.1% of the variance in arterial oxygen content per unit blood volume. Secondary erythrocytosis was achievable with low iron stores, but only if serum iron was high-normal: Low serum iron levels were associated with reduced haemoglobin per erythrocyte, and overall arterial oxygen content was lower in iron deficient patients (median 16.0 [IQR 14.9, 17.4]mls/dL compared to 18.8 [IQR 17.4, 20.1]mls/dL, p<0.0001). Exercise tolerance appeared unrelated to SaO2 but was significantly worse in patients with lower oxygen content (p<0.0001). A pre-defined athletic group had higher Hb:SaO2 and serum iron:ferritin ratios than non-athletes with normal exercise capacity. PAVM embolisation increased SaO2, but arterial oxygen content was precisely restored by a subsequent fall in haemoglobin: 86 (87.8%) patients reported no change in exercise tolerance at post-embolisation follow-up.Haemoglobin and oxygen measurements in isolation do not indicate the more physiologically relevant oxygen content per unit blood volume. This can be maintained for SaO2 ≥78.5%, and resets to the same arterial oxygen content after correction of hypoxaemia. Serum iron concentrations, not ferritin, seem to predict more successful polycythaemic responses

    Transpleural systemic artery-pulmonary artery communications in the absence of chronic inflammatory lung disease. A case series and review of the literature

    Get PDF
    AIM: To describe the causes and computed tomography (CT) and angiographic appearances of transpleural systemic artery-pulmonary artery shunts in patients without chronic inflammatory lung disease and determine their best management. MATERIALS AND METHODS: All patients referred to a tertiary referral unit between January 2013 and January 2020 in whom a diagnosis of a systemic-pulmonary artery communication without underlying chronic inflammatory lung disease was subsequently made have been included in this report. Medical records and imaging findings were reviewed retrospectively. RESULTS: Ten patients (male: female ratio = 7:3; median age 42 years [range 22-70 years]) with systemic artery-pulmonary artery shunts without chronic inflammatory lung disease were identified. Five were misdiagnosed as having a pulmonary arteriovenous malformation and had been referred for embolisation. In six patients, there was either a history of accidental or iatrogenic thoracic trauma or of inflammatory disease involving the pleura, and in two patients, in whom a previous medical history could not be obtained, there were CT features suggesting previous pleural inflammatory disease. Two shunts were thought to be congenital. All individuals were asymptomatic other than one with localised thoracic discomfort that dated from the time of surgery. All patients were managed conservatively and have remained well with a median follow-up of 4.5 years (range 1-11.3 years). CONCLUSIONS: Localised transpleural systemic artery-pulmonary artery shunts in the absence of chronic inflammatory lung disease are usually related to previous thoracic trauma/intervention or abdominal or pulmonary sepsis involving a pleural or diaphragmatic surface. Congenital shunts are rare. The present study and much of the literature supports conservative management

    Pulmonary Arteriovenous Malformations

    No full text

    Ischaemic strokes in patients with pulmonary arteriovenous malformations and hereditary hemorrhagic telangiectasia: associations with iron deficiency and platelets.

    Get PDF
    <div><p>Background</p><p>Pulmonary first pass filtration of particles marginally exceeding ∼7 µm (the size of a red blood cell) is used routinely in diagnostics, and allows cellular aggregates forming or entering the circulation in the preceding cardiac cycle to lodge safely in pulmonary capillaries/arterioles. Pulmonary arteriovenous malformations compromise capillary bed filtration, and are commonly associated with ischaemic stroke. Cohorts with CT-scan evident malformations associated with the highest contrast echocardiographic shunt grades are known to be at higher stroke risk. Our goal was to identify within this broad grouping, which patients were at higher risk of stroke.</p><p>Methodology</p><p>497 consecutive patients with CT-proven pulmonary arteriovenous malformations due to hereditary haemorrhagic telangiectasia were studied. Relationships with radiologically-confirmed clinical ischaemic stroke were examined using logistic regression, receiver operating characteristic analyses, and platelet studies.</p><p>Principal Findings</p><p>Sixty-one individuals (12.3%) had acute, non-iatrogenic ischaemic clinical strokes at a median age of 52 (IQR 41–63) years. In crude and age-adjusted logistic regression, stroke risk was associated not with venous thromboemboli or conventional neurovascular risk factors, but with low serum iron (adjusted odds ratio 0.96 [95% confidence intervals 0.92, 1.00]), and more weakly with low oxygen saturations reflecting a larger right-to-left shunt (adjusted OR 0.96 [0.92, 1.01]). For the same pulmonary arteriovenous malformations, the stroke risk would approximately double with serum iron 6 µmol/L compared to mid-normal range (7–27 µmol/L). Platelet studies confirmed overlooked data that iron deficiency is associated with exuberant platelet aggregation to serotonin (5HT), correcting following iron treatment. By MANOVA, adjusting for participant and 5HT, iron or ferritin explained 14% of the variance in log-transformed aggregation-rate (p = 0.039/p = 0.021).</p><p>Significance</p><p>These data suggest that patients with compromised pulmonary capillary filtration due to pulmonary arteriovenous malformations are at increased risk of ischaemic stroke if they are iron deficient, and that mechanisms are likely to include enhanced aggregation of circulating platelets.</p></div

    Directional Next-Generation RNA Sequencing and Examination of Premature Termination Codon Mutations in Endoglin/Hereditary Haemorrhagic Telangiectasia

    Get PDF
    Hereditary haemorrhagic telangiectasia (HHT) is a disease characterised by abnormal vascular structures, and most commonly caused by mutations in ENG, ACVRL1 or SMAD4 encoding endothelial cell-expressed proteins involved in TGF-β superfamily signalling. The majority of mutations reported on the HHT mutation database are predicted to lead to stop codons, either due to frameshifts or direct nonsense substitutions. The proportion is higher for ENG (67%) and SMAD4 (65%) than for ACVRL1 (42%), p < 0.0001. Here, by focussing on ENG, we report why conventional views of these mutations may need to be revised. Of the 111 stop codon-generating ENG mutations, on ExPASy translation, all except one were premature termination codons (PTCs), sited at least 50-55 bp upstream of the final exon-exon boundary of the main endoglin isoform, L-endoglin. This strongly suggests that the mutated RNA species will undergo nonsense-mediated decay. We provide new in vitro expression data to support dominant negative activity of stable truncated endoglin proteins but suggest these will not generate HHT: the single natural stop codon mutation in L-endoglin (sited within 50-55 nucleotides of the final exon-exon boundary) is unlikely to generate functional protein since it replaces the entire transmembrane domain, as would 8 further natural stop codon mutations, if the minor S-endoglin isoform were implicated in HHT pathogenesis. Finally, next-generation RNA sequencing data of 7 different RNA libraries from primary human endothelial cells demonstrate that multiple intronic regions of ENG are transcribed. The potential consequences of heterozygous deletions or duplications of such regions are discussed. These data support the haploinsufficiency model for HHT pathogenesis, explain why final exon mutations have not been detected to date in HHT, emphasise the potential need for functional examination of non-PTC-generating mutations, and lead to proposals for an alternate stratification system of mutational types for HHT genotype-phenotype correlations

    Specific cancer rates may differ in patients with hereditary haemorrhagic telangiectasia compared to controls.

    Get PDF
    BACKGROUND: Hereditary haemorrhagic telangiectasia (HHT) is inherited as an autosomal dominant trait, affects ~1 in 5,000, and causes multi-systemic vascular lesions and life-limiting complications. Life expectancy is surprisingly good, particularly for patients over 60ys. We hypothesised that individuals with HHT may be protected against life-limiting cancers. METHODS: To compare specific cancer rates in HHT patients and controls, we developed a questionnaire capturing data on multiple relatives per respondent, powered to detect differences in the four most common solid non skin cancers (breast, colorectal, lung and prostate), each associated with significant mortality. Blinded to cancer responses, reports of HHT-specific features allowed assignment of participants and relatives as HHT-subjects, unknowns, or controls. Logistic and quadratic regressions were used to compare rates of specific cancer types between HHT subjects and controls. RESULTS: 1,307 participants completed the questionnaire including 1,007 HHT-subjects and 142 controls. The rigorous HHT diagnostic algorithm meant that 158 (12%) completed datasets were not assignable either to HHT or control status. For cancers predominantly recognised as primary cancers, the rates in the controls generally matched age-standardised rates for the general population. HHT subjects recruited through the survey had similar demographics to controls, although the HHT group reported a significantly greater smoking habit. Combining data of participants and uniquely-reported relatives resulted in an HHT-arm of 2,161 (58% female), and control-arm of 2,817 (52% female), with median ages of 66ys [IQR 53–77] and 77ys [IQR 65–82] respectively. In both crude and age-adjusted regression, lung cancers were significantly less frequent in the HHT arm than controls (age-adjusted odds ratio 0.48 [0.30, 0.70], p = 0.0012). Breast cancer prevalence was higher in HHT than controls (age-adjusted OR 1.52 [1.07, 2.14], p = 0.018). Overall, prostate and colorectal cancer rates were equivalent, but the pattern of colorectal cancer was modified, with a higher prevalence in younger HHT patients than controls. CONCLUSIONS: These preliminary survey data suggest clinically significant differences in the rates of lung, breast and colorectal cancer in HHT patients compared to controls. For rare diseases in which longitudinal studies take decades to recruit equivalent datasets, this type of methodology provides a good first-step method for data collection
    • …
    corecore