128 research outputs found

    Bis(benzimidazol-1-yl)methane dihydrate

    Get PDF
    The bis­(benzimidazol-1-yl)methane mol­ecule of the title compound, C15H12N4·2H2O, displays a trans conformation with a twofold axis running through the methylene C atom. Two adjacent water mol­ecules are bonded to this mol­ecule through O—H⋯N hydrogen bonds, forming a trimer. Adjacent trimers are connected together via C—H⋯O inter­actions, forming a chain running along the b-axis direction. Two such chains are joined together via π–π inter­actions [centroid–centroid distance = 3.556 (2) Å], forming double chains, which are connected via the water mol­ecules through C—H⋯O associations, forming a sheet structure. The sheets are stacked on top of each other along the a-axis direction and connected through O—H⋯O and C—H⋯O inter­actions, forming a three-dimensional ABAB layer network structure

    13C-Metabolic Flux Analysis Reveals the Metabolic Flux Redistribution for Enhanced Production of Poly-γ-Glutamic Acid in dlt Over-Expressed Bacillus licheniformis

    Get PDF
    Poly-γ-glutamic acid (γ-PGA) is an anionic polymer with various applications. Teichoic acid (TA) is a special component of cell wall in gram-positive bacteria, and its D-alanylation modification can change the net negative charge of cell surface, autolysin activity and cationic binding efficiency, and might further affect metabolic production. In this research, four genes (dltA, dltB, dltC, and dltD) of dlt operon were, respectively, deleted and overexpressed in the γ-PGA producing strain Bacillus licheniformis WX-02. Our results implied that overexpression of these genes could all significantly increase γ-PGA synthetic capabilities, among these strains, the dltB overexpression strain WX-02/pHY-dltB owned the highest γ-PGA yield (2.54 g/L), which was 93.42% higher than that of the control strain WX-02/pHY300 (1.31 g/L). While, the gene deletion strains produced lower γ-PGA titers. Furthermore, 13C-Metabolic flux analysis was conducted to investigate the influence of dltB overexpression on metabolic flux redistribution during γ-PGA synthesis. The simulation data demonstrated that fluxes of pentose phosphate pathway and tricarboxylic acid cycle in WX-02/pHY-dltB were 36.41 and 19.18 mmol/g DCW/h, increased by 7.82 and 38.38% compared to WX-02/pHY300 (33.77 and 13.86 mmol/g DCW/h), respectively. The synthetic capabilities of ATP and NADPH were also increased slightly. Meanwhile, the fluxes of glycolytic and by-product synthetic pathways were all reduced in WX-02/pHY-dltB. All these above phenomenons were beneficial for γ-PGA synthesis. Collectively, this study clarified that overexpression of dltB strengthened the fluxes of PPP pathway, TCA cycle and energy metabolism for γ-PGA synthesis, and provided an effective strategy for enhanced production of γ-PGA

    Engineering Bacillus licheniformis for the production of meso-2,3-butanediol

    Get PDF
    Additional file 1: Figure S1. Multiple sequence alignments of GDH from B. licheniformis WX-02 (WX-02 GDH) with GDHs from other strains

    Algal oil alleviates antibiotic-induced intestinal inflammation by regulating gut microbiota and repairing intestinal barrier

    Get PDF
    IntroductionTaking antibiotics would interfere with gut microbiota and increase the risk of opportunistic pathogen infection and inflammation.MethodsIn this study, 36 male C57BL/6 mice were divided into 4 groups (n = 9) to investigate whether two kinds of algal oil could alleviate the intestinal damage induced by CS (Ceftriaxone sodium). These algal oils were obtained from Schizochytrium sp. cultures using Yeast extract (YE) and Rapeseed meal (RSM) as substrate, respectively. All tested mice were administrated with CS for 8 days and then the colon pathological morphology, the expression levels of inflammatory factors and the gut microbial profile were analyzed in mice supplemented with or without algal oil.ResultsThe results showed that both YE and RSM algal oils markedly reduced mucosal damage and intestinal inflammatory response in CS-treated mice by inhibiting the pro-inflammatory cytokine tumor necrosis factor (TNF)-α, interleukin (IL)-6 and myeloperoxidase (MPO) activity. In addition, fluorescence immunohistochemistry showed that the tight junction protein ZO-1 was increased in mice supplemented with YE and RSM algal oil. Furthermore, YE algal oil promoted the beneficial intestinal bacteria such as Lachnospiraceae and S24_7 compared with the CS group, while supplementation with RSM algal oil enriched the Robinsoniella. Spearman’s correlation analysis exhibited that Melissococcus and Parabacteroides were positively correlated with IL-6 but negatively correlated with IL-10.DiscussionThis study suggested that supplementation with algal oil could alleviate intestinal inflammation by regulating gut microbiota and had a protective effect on maintaining intestinal barrier against antibiotic-induced damage in mice

    Evaluation of the Biogenic Amines and Microbial Contribution in Traditional Chinese Sausages

    Get PDF
    Biogenic amines (BAs) in sausages represent a health risk for consumers, and thus investigating the BAs accumulation mechanism is important to control the BAs. In this study, the BAs profiles of 16 typical Chinese sausage samples were evaluated, and 8 kinds of common BAs were detected from different samples. As a whole, the BAs contents of the majority of Chinese sausage samples were within the safe dosage range, except that the total BAs and histamine concentrations of sample HBBD were above the toxic dosage levels. Furthermore, the bacterial and fungal communities of the Chinese sausage samples were investigated by high-throughput sequencing analysis, and Staphylococcus, Bacillus, Lactococcus, Lactobacillus, Debaryomyces, and Aspergillus were identified as the predominant genera. Accordingly, 13 representative strains were selected from the dominant genera, and their BAs formation and degradation properties were evaluated. Finally, the results of fermented meats model experiment indicated that the Staphylococcus isolates including Staphylococcus pasteuri Sp, Staphylococcus epidermidis Se, Staphylococcus carnosus Sc1, Staphylococcus carnosus Sc2, and Staphylococcus simulans Ss could significantly reduce BAs, possessing the potential as the starter cultures to control the BAs in fermented meat products. The present study not only helped to explain the BAs accumulation mechanism in Chinese sausage, but also developed the candidates for potential BAs control in fermented meat products

    Population genomics of an icefish reveals mechanisms of glacier-driven adaptive radiation in Antarctic notothenioids

    Get PDF
    Background Antarctica harbors the bulk of the species diversity of the dominant teleost fish suborder—Notothenioidei. However, the forces that shape their evolution are still under debate. Results We sequenced the genome of an icefish, Chionodraco hamatus, and used population genomics and demographic modelling of sequenced genomes of 52 C. hamatus individuals collected mainly from two East Antarctic regions to investigate the factors driving speciation. Results revealed four icefish populations with clear reproduction separation were established 15 to 50 kya (kilo years ago) during the last glacial maxima (LGM). Selection sweeps in genes involving immune responses, cardiovascular development, and photoperception occurred differentially among the populations and were correlated with population-specific microbial communities and acquisition of distinct morphological features in the icefish taxa. Population and species-specific antifreeze glycoprotein gene expansion and glacial cycle-paced duplication/degeneration of the zona pellucida protein gene families indicated fluctuating thermal environments and periodic influence of glacial cycles on notothenioid divergence. Conclusions We revealed a series of genomic evidence indicating differential adaptation of C. hamatus populations and notothenioid species divergence in the extreme and unique marine environment. We conclude that geographic separation and adaptation to heterogeneous pathogen, oxygen, and light conditions of local habitats, periodically shaped by the glacial cycles, were the key drivers propelling species diversity in Antarctica.info:eu-repo/semantics/publishedVersio

    Quantum-Behaved Particle Swarm Optimization with Weighted Mean Personal Best Position and Adaptive Local Attractor

    No full text
    Motivated by concepts in quantum mechanics and particle swarm optimization (PSO), quantum-behaved particle swarm optimization (QPSO) was proposed as a variant of PSO with better global search ability. In this paper, a QPSO with weighted mean personal best position and adaptive local attractor (ALA-QPSO) is proposed to simultaneously enhance the search performance of QPSO and acquire good global optimal ability. In ALA-QPSO, the weighted mean personal best position is obtained by distinguishing the difference of the effect of the particles with different fitness, and the adaptive local attractor is calculated using the sum of squares of deviations of the particles’ fitness values as the coefficient of the linear combination of the particle best known position and the entire swarm’s best known position. The proposed ALA-QPSO algorithm is tested on twelve benchmark functions, and compared with the basic Artificial Bee Colony and the other four QPSO variants. Experimental results show that ALA-QPSO performs better than those compared method in all of the benchmark functions in terms of better global search capability and faster convergence rate

    Characterization of biaxial fatigue durability for fuel cell membranes using pressure-loaded blisters

    No full text
    In this study, a customized pressure-loaded blister test device capable of achieving sinusoidal control of pressure was developed to investigate the biaxial fatigue durability of proton exchange membrane (PEM) for fuel cells. The effect of temperature, relative humidity and stress state on biaxial fatigue life was investigated, and the biaxial stress-strain curves under different temperature and relative humidity conditions were also compared. It is found that increasing pressure induces higher biaxial stress and exacerbates the accumulation of plastic strain in the membrane, which adversely affects biaxial fatigue lifetime of PEM. Increasing temperature and decreasing humidity reduces the biaxial yield strength, thereby reducing the fatigue life of membrane. In addition, lowering temperature can lead to a transition in the failure mode from complete rupture to leakage failure. The increase in air pressure ratio, Rp, (minimum to maximum pressure ratio) also leads to premature membrane failure

    The crystal structure of 4-aminiumbiphenyl, C18H17NO3S

    No full text
    C18H17NO3S, monoclinic, Cc (no. 9), a = 32.036(3) Å, b = 7.2154(7) Å, c = 7.4283(8) Å, β = 99.943(2)∘, V = 1691.3(3) Å3, Z = 4, Rgt(F) = 0.0343, wRref(F2) = 0.0821, T = 298 K
    corecore