89 research outputs found

    Automated identification and quantification of myocardial inflammatory infiltration in digital histological images to diagnose myocarditis

    Full text link
    This study aims to develop a new computational pathology approach that automates the identification and quantification of myocardial inflammatory infiltration in digital HE-stained images to provide a quantitative histological diagnosis of myocarditis.898 HE-stained whole slide images (WSIs) of myocardium from 154 heart transplant patients diagnosed with myocarditis or dilated cardiomyopathy (DCM) were included in this study. An automated DL-based computational pathology approach was developed to identify nuclei and detect myocardial inflammatory infiltration, enabling the quantification of the lymphocyte nuclear density (LND) on myocardial WSIs. A cutoff value based on the quantification of LND was proposed to determine if the myocardial inflammatory infiltration was present. The performance of our approach was evaluated with a five-fold cross-validation experiment, tested with an internal test set from the myocarditis group, and confirmed by an external test from a double-blind trial group. An LND of 1.02/mm2 could distinguish WSIs with myocarditis from those without. The accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) in the five-fold cross-validation experiment were 0.899 plus or minus 0.035, 0.971 plus or minus 0.017, 0.728 plus or minus 0.073 and 0.849 plus or minus 0.044, respectively. For the internal test set, the accuracy, sensitivity, specificity, and AUC were 0.887, 0.971, 0.737, and 0.854, respectively. The accuracy, sensitivity, specificity, and AUC for the external test set reached 0.853, 0.846, 0.858, and 0.852, respectively. Our new approach provides accurate and reliable quantification of the LND of myocardial WSIs, facilitating automated quantitative diagnosis of myocarditis with HE-stained images.Comment: 21 pages,5 figures,6 Tables, 25 reference

    Phylogenetic and Pathotypical Analysis of Two Virulent Newcastle Disease Viruses Isolated from Domestic Ducks in China

    Get PDF
    Two velogenic Newcastle disease viruses (NDV) obtained from outbreaks in domestic ducks in China were characterized in this study. Phylogenetic analysis revealed that both strains clustered with the class II viruses, with one phylogenetically close to the genotype VII NDVs and the other closer to genotype IX. The deduced amino acid sequence of the cleavage site of the fusion (F) protein confirmed that both isolates contained the virulent motif 112RRQK/RRF117 at the cleavage site. The two NDVs had severe pathogenicity in fully susceptible chickens, resulting in 100% mortality. One of the isolates also demonstrated some pathogenicity in domestic ducks. The present study suggests that more than one genotype of NDV circulates in domestic ducks in China and viral transmission may occur among chickens and domestic ducks

    The E2 glycoprotein is necessary but not sufficient for the adaptation of classical swine fever virus lapinized vaccine C-strain to the rabbit

    Get PDF
    Classical swine fever virus (CSFV) C-strain was developed through hundreds of passages of a highly virulent CSFV in rabbits. To investigate the molecular basis for the adaptation of C-strain to the rabbit (ACR), a panel of chimeric viruses with the exchange of glycoproteins Erns, E1, and/or E2 between C-strain and the highly virulent Shimen strain and a number of mutant viruses with different amino acid substitutions in E2 protein were generated and evaluated in rabbits. Our results demonstrate that Shimen-based chimeras expressing Erns-E1-E2, Erns-E2 or E1-E2 but not Erns-E1, Erns, E1, or E2 of C-strain can replicate in rabbits, indicating that E2 in combination with either Erns or E1 confers the ACR. Notably, E2 and the amino acids P108 and T109 in Domain I of E2 are critical in ACR. Collectively, our data indicate that E2 is crucial in mediating the ACR, which requires synergistic contribution of Erns or E1

    The Antimicrobial Peptide Mastoparan X Protects Against Enterohemorrhagic Escherichia coli O157:H7 Infection, Inhibits Inflammation, and Enhances the Intestinal Epithelial Barrier

    Get PDF
    Escherichia coli can cause intestinal diseases in humans and livestock, destroy the intestinal barrier, exacerbate systemic inflammation, and seriously threaten human health and animal husbandry development. The aim of this study was to investigate whether the antimicrobial peptide mastoparan X (MPX) was effective against E. coli infection. BALB/c mice infected with E. coli by intraperitoneal injection, which represents a sepsis model. In this study, MPX exhibited no toxicity in IPEC-J2 cells and notably suppressed the levels of interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), myeloperoxidase (MPO), and lactate dehydrogenase (LDH) released by E. coli. In addition, MPX improved the expression of ZO-1, occludin, and claudin and enhanced the wound healing of IPEC-J2 cells. The therapeutic effect of MPX was evaluated in a murine model, revealing that it protected mice from lethal E. coli infection. Furthermore, MPX increased the length of villi and reduced the infiltration of inflammatory cells into the jejunum. SEM and TEM analyses showed that MPX effectively ameliorated the jejunum damage caused by E. coli and increased the number and length of microvilli. In addition, MPX decreased the expression of IL-2, IL-6, TNF-α, p-p38, and p-p65 in the jejunum and colon. Moreover, MPX increased the expression of ZO-1, occludin, and MUC2 in the jejunum and colon, improved the function of the intestinal barrier, and promoted the absorption of nutrients. This study suggests that MPX is an effective therapeutic agent for E. coli infection and other intestinal diseases, laying the foundation for the development of new drugs for bacterial infections

    Ulinastatin Alleviates Repetitive Ketamine Exposure-Evoked Cognitive Impairment in Adolescent Mice

    No full text
    Ketamine (KET) is widely used for induction and maintenance of anesthesia, and long-term use is required for treatment of depression patients. Repeated use of KET is associated with mood and memory disorders. Ulinastatin (UTI), a urinary trypsin inhibitor, has been widely undertaken as an anti-inflammatory drug and proved to have neuroprotective effects. The aim of this work was to determine whether prophylactic use of UTI could attenuate KET-induced cognitive impairment. It was found that repetitive KET anesthesia cause cognitive and emotional disorders in adolescent mice in WMZ and OFT test, while UTI pretreatment reversed the poor performance compared to the AK group, and the platform finding time and center crossing time were obviously short in the CK+UTI group (P<0.05). Our ELISA experiment results discovered that UTI pretreatment reduced the expression levels of IL-1β and IL-6 induced by CK anesthesia compared to AK (P<0.05). In addition, UTI pretreatment protected the cognitive function by restraining the expression levels of Tau protein, Tau phospho-396 protein, and Aβ protein in the CK group compared to the AK group in Western blotting (P<0.05). The results suggested that UTI could act as a new strategy to prevent the neurotoxicity of KET, revealing a significant neuroprotective effect of UTI

    Membrane Active Antimicrobial Peptides: Translating Mechanistic Insights to Design

    No full text
    Antimicrobial peptides (AMPs) are promising next generation antibiotics that hold great potential for combating bacterial resistance. AMPs can be both bacteriostatic and bactericidal, induce rapid killing and display a lower propensity to develop resistance than do conventional antibiotics. Despite significant progress in the past 30 years, no peptide antibiotic has reached the clinic yet. Poor understanding of the action mechanisms and lack of rational design principles have been the two major obstacles that have slowed progress. Technological developments are now enabling multidisciplinary approaches including molecular dynamics simulations combined with biophysics and microbiology toward providing valuable insights into the interactions of AMPs with membranes at atomic level. This has led to increasingly robust models of the mechanisms of action of AMPs and has begun to contribute meaningfully toward the discovery of new AMPs. This review discusses the detailed action mechanisms that have been put forward, with detailed atomistic insights into how the AMPs interact with bacterial membranes. The review further discusses how this knowledge is exploited toward developing design principles for novel AMPs. Finally, the current status, associated challenges, and future directions for the development of AMP therapeutics are discussed.NMRC (Natl Medical Research Council, S’pore)Published versio

    Transcription profiles of the responses of chicken bursae of Fabricius to IBDV in different timing phases

    No full text
    Abstract Background Infectious bursal disease virus (IBDV) infection causes immunosuppression in chickens and increases their susceptibility to secondary infections. To explore the interaction between host and IBDV, RNA-Seq was applied to analyse the transcriptional profiles of the responses of chickens’ bursas of Fabricius in the early stage of IBDV infection. Results The results displayed that a total of 15546 genes were identified in the chicken bursa libraries. Among the annotated genes, there were 2006 and 4668 differentially expressed genes in the infection group compared with the mock group on day 1 and day 3 post inoculation (1 and 3 dpi), respectively. Moreover, there were 676 common up-regulated and 83 common down-regulated genes in the bursae taken from the chickens infected with IBDV on both 1 and 3 dpi. Meanwhile, there were also some characteristic differentially expressed genes on 1 and 3 dpi. On day 1 after inoculation with IBDV, host responses mainly displayed immune response processes, while metabolic pathways played an important role on day three post infection. Six genes were confirmed by quantitative reverse transcription-PCR. Conclusions In conclusion, the differential gene expression profile demonstrated with RNA-Seq might offer a better understanding of the molecular interactions between host and IBDV during the early stage of infection
    corecore