32 research outputs found

    ROCK1/2 signaling contributes to corticosteroid-refractory acute graft-versus-host disease

    Get PDF
    Patients with corticosteroid-refractory acute graft-versus-host disease (aGVHD) have a low one-year survival rate. Identification and validation of novel targetable kinases in patients who experience corticosteroid-refractory-aGVHD may help improve outcomes. Kinase-specific proteomics of leukocytes from patients with corticosteroid-refractory-GVHD identified rho kinase type 1 (ROCK1) as the most significantly upregulated kinase. ROCK1/2 inhibition improved survival and histological GVHD severity in mice and was synergistic with JAK1/2 inhibition, without compromising graft-versus-leukemia-effects. ROCK1/2-inhibition in macrophages or dendritic cells prior to transfer reduced GVHD severity. Mechanistically, ROCK1/2 inhibition or ROCK1 knockdown interfered with CD80, CD86, MHC-II expression and IL-6, IL-1β, iNOS and TNF production in myeloid cells. This was accompanied by impaired T cell activation by dendritic cells and inhibition of cytoskeletal rearrangements, thereby reducing macrophage and DC migration. NF-κB signaling was reduced in myeloid cells following ROCK1/2 inhibition. In conclusion, ROCK1/2 inhibition interferes with immune activation at multiple levels and reduces acute GVHD while maintaining GVL-effects, including in corticosteroid-refractory settings

    Proposed global prognostic score for systemic mastocytosis: a retrospective prognostic modelling study

    Get PDF
    [Background]: Several risk stratification models have been proposed in recent years for systemic mastocytosis but have not been directly compared. Here we designed and validated a risk stratification model for progression-free survival (PFS) and overall survival (OS) in systemic mastocytosis on the basis of all currently available prognostic factors, and compared its predictive capacity for patient outcome with that of other risk scores.[Methods]: We did a retrospective prognostic modelling study based on patients diagnosed with systemic mastocytosis between March 1, 1983, and Oct 11, 2019. In a discovery cohort of 422 patients from centres of the Spanish Network on Mastocytosis (REMA), we evaluated previously identified, independent prognostic features for prognostic effect on PFS and OS by multivariable analysis, and designed a global prognostic score for mastocytosis (GPSM) aimed at predicting PFS (GPSM-PFS) and OS (GPSM-OS) by including only those variables that showed independent prognostic value (p<0·05). The GPSM scores were validated in an independent cohort of 853 patients from centres in Europe and the USA, and compared with pre-existing risk models in the total patient series (n=1275), with use of Harrells' concordance index (C-index) as a readout of the ability of each model to risk-stratify patients according to survival outcomes.[Findings]: Our GPSM-PFS and GPSM-OS models were based on unique combinations of independent prognostic factors for PFS (platelet count ≤100 × 109 cells per L, serum β2-microglobulin ≥2·5 μg/mL, and serum baseline tryptase ≥125 μg/L) and OS (haemoglobin ≤110 g/L, serum alkaline phosphatase ≥140 IU/L, and at least one mutation in SRSF2, ASXL1, RUNX1, or DNMT3A). The models showed clear discrimination between low-risk and high-risk patients in terms of worse PFS and OS prognoses in the discovery and validation cohorts, and further discrimination of intermediate-risk patients. The GPSM-PFS score was an accurate predictor of PFS in systemic mastocytosis (C-index 0·90 [95% CI 0·87–0·93], vs values ranging from 0·85 to 0·88 for pre-existing models), particularly in non-advanced systemic mastocytosis (C-index 0·85 [0·76–0·92], within the range for pre-existing models of 0·80 to 0·93). Additionally, the GPSM-OS score was able to accurately predict OS in the entire cohort (C-index 0·92 [0·89–0·94], vs 0·67 to 0·90 for pre-existing models), and showed some capacity to predict OS in advanced systemic mastocytosis (C-index 0·72 [0·66–0·78], vs 0·64 to 0·73 for pre-existing models).[Interpretation]: All evaluated risk classifications predicted survival outcomes in systemic mastocytosis. The REMA-PFS and GPSM-PFS models for PFS, and the International Prognostic Scoring System for advanced systemic mastocytosis and GPSM-OS model for OS emerged as the most accurate models, indicating that robust prognostication might be prospectively achieved on the basis of biomarkers that are accessible in diagnostic laboratories worldwide.Carlos III Health Institute, European Regional Development Fund, Spanish Association of Mastocytosis and Related Diseases, Rare Diseases Strategy of the Spanish National Health System, Junta of Castile and León, Charles and Ann Johnson Foundation, Stanford Cancer Institute Innovation Fund, Austrian Science Fund

    Treatment of therapy-related acute myeloid leukemia and underlying multiple myeloma with decitabine/venetoclax and daratumumab

    No full text
    Givosiran is a novel approach to treat patients with acute intermittent porphyrias (AIP) by silencing of ∂-ALA-synthase 1, the first enzyme of heme biosynthesis in the liver. We included two patients in the Envision study who responded clinically well to this treatment. However, in both patients, therapy had to be discontinued because of severe adverse effects: One patient (A) developed local injection reactions which continued to spread all over her body with increasing number of injections and eventually caused a severe systemic allergic reaction. Patient B was hospitalized because of a fulminant pancreatitis. Searching for possible causes, we also measured the patients plasma homocysteine (Hcy) levels in fluoride-containing collection tubes: by LC-MS/MS unexpectedly, plasma Hcy levels were 100 and 200 in patient A and between 100 and 400 μmol/l in patient B. Searching for germline mutations in 10 genes that are relevant for homocysteine metabolism only revealed hetero- and homozygous polymorphisms in the MTHFR gene. Alternatively, an acquired inhibition of cystathionine-beta-synthase which is important for homocysteine metabolism could explain the plasma homocysteine increase. This enzyme is heme-dependent: when we gave heme arginate to our patients, Hcy levels rapidly dropped. Hence, we conclude that inhibition of ∂-ALA-synthase 1 by givosiran causes a drop of free heme in the hepatocyte and therefore the excessive increase of plasma homocysteine. Hyperhomocysteinemia may contribute to the adverse effects seen in givosiran-treated patients which may be due to protein-N-homocysteinylation

    GPRC5C drives branched-chain amino acid metabolism in leukemogenesis

    Get PDF
    Altres ajuts: Jose Carreras Leukämie-StiftungLeukemia stem cells (LSCs) share numerous features with healthy hematopoietic stem cells (HSCs). G-protein coupled receptor family C group 5 member C (GPRC5C) is a regulator of HSC dormancy. However, GPRC5C functionality in acute myeloid leukemia (AML) is yet to be determined. Within patient AML cohorts, high GPRC5C levels correlated with poorer survival. Ectopic Gprc5c expression increased AML aggression through the activation of NF-κB, which resulted in an altered metabolic state with increased levels of intracellular branched-chain amino acids (BCAAs). This onco-metabolic profile was reversed upon loss of Gprc5c, which also abrogated the leukemia-initiating potential. Targeting the BCAA transporter SLC7A5 with JPH203 inhibited oxidative phosphorylation and elicited strong antileukemia effects, specifically in mouse and patient AML samples while sparing healthy bone marrow cells. This antileukemia effect was strengthened in the presence of venetoclax and azacitidine. Our results indicate that the GPRC5C-NF-κB-SLC7A5-BCAAs axis is a therapeutic target that can compromise leukemia stem cell function in AML

    Comprehensive characterization of central BCL-2 family members in aberrant eosinophils and their impact on therapeutic strategies

    No full text
    Purpose!#!Hypereosinophilia represents a heterogenous group of severe medical conditions characterized by elevated numbers of eosinophil granulocytes in peripheral blood, bone marrow or tissue. Treatment options for hypereosinophilia remain limited despite recent approaches including IL-5-targeted monoclonal antibodies and tyrosine kinase inhibitors.!##!Methods!#!To understand aberrant survival patterns and options for pharmacologic intervention, we characterized BCL-2-regulated apoptosis signaling by testing for BCL-2 family expression levels as well as pharmacologic inhibition using primary patient samples from diverse subtypes of hypereosinophilia (hypereosinophilic syndrome n = 18, chronic eosinophilic leukemia not otherwise specified n = 9, lymphocyte-variant hypereosinophilia n = 2, myeloproliferative neoplasm with eosinophilia n = 2, eosinophilic granulomatosis with polyangiitis n = 11, reactive eosinophilia n = 3).!##!Results!#!Contrary to published literature, we found no difference in the levels of the lncRNA Morrbid and its target BIM. Yet, we identified a near complete loss of expression of pro-apoptotic PUMA as well as a reduction in anti-apoptotic BCL-2. Accordingly, BCL-2 inhibition using venetoclax failed to achieve cell death induction in eosinophil granulocytes and bone marrow mononuclear cells from patients with hypereosinophilia. In contrast, MCL1 inhibition using S63845 specifically decreased the viability of bone marrow progenitor cells in patients with hypereosinophilia. In patients diagnosed with Chronic Eosinophilic Leukemia (CEL-NOS) or Myeloid and Lymphatic Neoplasia with hypereosinophilia (MLN-Eo) repression of survival was specifically powerful.!##!Conclusion!#!Our study shows that MCL1 inhibition might be a promising therapeutic option for hypereosinophilia patients specifically for CEL-NOS and MLN-Eo

    Demethylating therapy increases anti-CD123 CAR T cell cytotoxicity against acute myeloid leukemia

    Full text link
    Successful treatment of acute myeloid leukemia (AML) with chimeric antigen receptor (CAR) T cells is hampered by toxicity on normal hematopoietic progenitor cells and low CAR T cell persistence. Here, we develop third-generation anti-CD123 CAR T cells with a humanized CSL362-based ScFv and a CD28-OX40-CD3ζ intracellular signaling domain. This CAR demonstrates anti-AML activity without affecting the healthy hematopoietic system, or causing epithelial tissue damage in a xenograft model. CD123 expression on leukemia cells increases upon 5′-Azacitidine (AZA) treatment. AZA treatment of leukemia-bearing mice causes an increase in CTLA-4negative anti-CD123 CAR T cell numbers following infusion. Functionally, the CTLA-4negative anti-CD123 CAR T cells exhibit superior cytotoxicity against AML cells, accompanied by higher TNFα production and enhanced downstream phosphorylation of key T cell activation molecules. Our findings indicate that AZA increases the immunogenicity of AML cells, enhancing recognition and elimination of malignant cells by highly efficient CTLA-4negative anti-CD123 CAR T cells
    corecore