23 research outputs found

    Revisiting QRS detection methodologies for portable, wearable, battery-operated, and wireless ECG systems

    Get PDF
    Cardiovascular diseases are the number one cause of death worldwide. Currently, portable battery-operated systems such as mobile phones with wireless ECG sensors have the potential to be used in continuous cardiac function assessment that can be easily integrated into daily life. These portable point-of-care diagnostic systems can therefore help unveil and treat cardiovascular diseases. The basis for ECG analysis is a robust detection of the prominent QRS complex, as well as other ECG signal characteristics. However, it is not clear from the literature which ECG analysis algorithms are suited for an implementation on a mobile device. We investigate current QRS detection algorithms based on three assessment criteria: 1) robustness to noise, 2) parameter choice, and 3) numerical efficiency, in order to target a universal fast-robust detector. Furthermore, existing QRS detection algorithms may provide an acceptable solution only on small segments of ECG signals, within a certain amplitude range, or amid particular types of arrhythmia and/or noise. These issues are discussed in the context of a comparison with the most conventional algorithms, followed by future recommendations for developing reliable QRS detection schemes suitable for implementation on battery-operated mobile devices.Mohamed Elgendi, Björn Eskofier, Socrates Dokos, Derek Abbot

    TrbB from Conjugative Plasmid F Is a Structurally Distinct Disulfide Isomerase That Requires DsbD for Redox State Maintenance ▿ †

    No full text
    TrbB, a periplasmic protein encoded by the conjugative plasmid F, has a predicted thioredoxin-like fold and possesses a C-X-X-C redox active site motif. TrbB may function in the conjugative process by serving as a disulfide bond isomerase, facilitating proper folding of a subset of F-plasmid-encoded proteins in the periplasm. Previous studies have demonstrated that a ΔtrbB F plasmid in Escherichia coli lacking DsbCE.coli, its native disulfide bond isomerase, experiences a 10-fold decrease in mating efficiency but have not provided direct evidence for disulfide bond isomerase activity. Here we demonstrate that trbB can partially restore transfer of a variant of the distantly related R27 plasmid when both chromosomal and plasmid genes encoding disulfide bond isomerases have been disrupted. In addition, we show that TrbB displays both disulfide bond isomerase and reductase activities on substrates not involved in the conjugative process. Unlike canonical members of the disulfide bond isomerase family, secondary structure predictions suggest that TrbB lacks both an N-terminal dimerization domain and an α-helical domain found in other disulfide bond isomerases. Phylogenetic analyses support the conclusion that TrbB belongs to a unique family of plasmid-based disulfide isomerases. Interestingly, although TrbB diverges structurally from other disulfide bond isomerases, we show that like those isomerases, TrbB relies on DsbD from E. coli for maintenance of its C-X-X-C redox active site motif
    corecore