16 research outputs found

    Ancient, independent evolution and distinct molecular features of the novel human T-lymphotropic virus type 4

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human T-lymphotropic virus type 4 (HTLV-4) is a new deltaretrovirus recently identified in a primate hunter in Cameroon. Limited sequence analysis previously showed that HTLV-4 may be distinct from HTLV-1, HTLV-2, and HTLV-3, and their simian counterparts, STLV-1, STLV-2, and STLV-3, respectively. Analysis of full-length genomes can provide basic information on the evolutionary history and replication and pathogenic potential of new viruses.</p> <p>Results</p> <p>We report here the first complete HTLV-4 sequence obtained by PCR-based genome walking using uncultured peripheral blood lymphocyte DNA from an HTLV-4-infected person. The HTLV-4(1863LE) genome is 8791-bp long and is equidistant from HTLV-1, HTLV-2, and HTLV-3 sharing only 62–71% nucleotide identity. HTLV-4 has a prototypic genomic structure with all enzymatic, regulatory, and structural proteins preserved. Like STLV-2, STLV-3, and HTLV-3, HTLV-4 is missing a third 21-bp transcription element found in the long terminal repeats of HTLV-1 and HTLV-2 but instead contains unique c-Myb and pre B-cell leukemic transcription factor binding sites. Like HTLV-2, the PDZ motif important for cellular signal transduction and transformation in HTLV-1 and HTLV-3 is missing in the C-terminus of the HTLV-4 Tax protein. A basic leucine zipper (b-ZIP) region located in the antisense strand of HTLV-1 and believed to play a role in viral replication and oncogenesis, was also found in the complementary strand of HTLV-4. Detailed phylogenetic analysis shows that HTLV-4 is clearly a monophyletic viral group. Dating using a relaxed molecular clock inferred that the most recent common ancestor of HTLV-4 and HTLV-2/STLV-2 occurred 49,800 to 378,000 years ago making this the oldest known PTLV lineage. Interestingly, this period coincides with the emergence of <it>Homo sapiens sapiens </it>during the Middle Pleistocene suggesting that early humans may have been susceptible hosts for the ancestral HTLV-4.</p> <p>Conclusion</p> <p>The inferred ancient origin of HTLV-4 coinciding with the appearance of <it>Homo sapiens</it>, the propensity of STLVs to cross-species into humans, the fact that HTLV-1 and -2 spread globally following migrations of ancient populations, all suggest that HTLV-4 may be prevalent. Expanded surveillance and clinical studies are needed to better define the epidemiology and public health importance of HTLV-4 infection.</p

    Host Genes and HIV: The Role of the Chemokine Receptor Gene CCR5 and Its Allele (∆32 CCR5)

    Get PDF
    Since the late 1970s, 8.4 million people worldwide, including 1.7 million children, have died of AIDS, and an estimated 22 million people are infected with human immunodeficiency virus (HIV) (1). During 1995 and 1996, major clinical and laboratory discoveries regarding HIV pathogenesis provided new hope for the prevention and treatment of HIV infection. One major discovery was that members of the chemokine receptor family serve as cofactors for HIV entry into cells. We describe the role of allelic polymorphism in the gene coding for the CCR5 chemokine receptor with regard to susceptibility to and disease course of HIV infection. We also examine the effect of this discovery on medical and public health practices

    Evidence of a Role for the Q151L Mutation and the Viral Background in Development of Multiple Dideoxynucleoside-Resistant Human Immunodeficiency Virus Type 1

    No full text
    The majority of human immunodeficiency virus type 1 (HIV-1)-infected patients treated with zidovudine (AZT) plus zalcitabine (ddC) and didanosine (ddI) develop AZT resistance mediated by mutations such as T215Y and M41L. Only a small proportion of patients develop multiple dideoxynucleoside resistance (MDNR) mediated by the Q151M mutation. To gain insight into the factors responsible for the low frequency of selection of Q151M, we evaluated the replication capabilities of recombinant viruses carrying two possible intermediates (151L or 151K) of the Q151M mutation generated in different reverse transcriptase (RT) genetic backgrounds. The 151L and 151K mutations were introduced by site-directed mutagenesis in RTs from two patient-derived HIV-1 isolates that had either wild type (WT) Q or the Q151M (posttreatment isolate) mutation. For comparison, both mutations were also introduced in a laboratory-adapted HIV-1 strain (HIV-1(HXB2)). Analysis of replication capabilities showed that both 151L and 151K were lethal in RT genetic backgrounds of the WT isolate and in HIV-1(HXB2). In contrast, 151L but not 151K allowed virus replication in RT backgrounds of the posttreatment isolate. Three mutations (V35I, S68G, and I178M) were present in the RT background of the posttreatment isolate but not in the WT isolate. Introduction of S68G in the RT of both the WT isolate and HIV-1(HXB2) partially restored replication capacity of recombinants carrying the 151L mutation. The S68G mutation alone did not confer a significant replicative disadvantage in WT viruses. Like HIV-1(151M), HIV-1(151L) RT was found to have six- to eightfold resistance to AZT-triphosphate (TP), ddA-TP, and ddC-TP, indicating an MDNR phenotype. However, HIV-1(151L) was found to be less fit than HIV-1(151M), which may explain the preferential selection of HIV-1(151M) observed in vivo. The demonstrated ability of HIV-1(151L/68G) to replicate and the associated MDNR suggest that 151L is a potential intermediate of Q151M. The dependence of HIV-1(151L) on other mutations, such as S68G, for replication may explain the low frequency of the Q151M-mediated pathway of resistance

    Polymorphism in the circumsporozoite protein of the human malaria parasite Plasmodium vivax

    No full text
    Centers for Disease Control, Public Health Services. U.S. Department of Health and Human Services. Division of Parasitic Diseases, National Center for Infectious Diseases. Malaria Branch. Atlanta GA, USA.Centers for Disease Control, Public Health Services. U.S. Department of Health and Human Services. Division of Parasitic Diseases, National Center for Infectious Diseases. Malaria Branch. Atlanta GA, USA.Ministério da Saúde. Fundação Nacional de Saúde. Instituto Evandro Chagas. Belém, PA, Brasil.Governo do Estado de São Paulo. Superintendência de Controle de Endemias. Malaria Department. São Paulo, SP, Brazil.Papua New Guinea Institute of Medical Research. Goroka, PNG.The circumsporozoite (CS) protein that covers the surface of infectious sporozoites is a candidate antigen in malaria vaccine development. To determine the extent of B- and T-epitope polymorphism and to understand the mechanisms of antigenic variability, we have characterized the CS protein gene of Plasmodium vivax from field isolates representing geographically distant regions of Papua New Guinea (PNG) and Brazil. In the central repeat region of the CS protein, in addition to variation in the number of repeats, an array of mutations was observed which suggests that point mutations have led to the emergence of the variant CS repeat sequence ANGA(G/D)(N/D)QPG from GDRA(D/A)GQPA. Outside the repeat region of the protein, the nonsilent nucleotide substitutions of independent origin are localized in three domains of the protein that either harbor known T-cell determinants or are analogous to the Plasmodium falciparum immunodominant determinants, Th2R and Th3R. We have found that, with the exception of one CS clone sequence that was shared by one P. vivax isolate each from PNG and Brazil, the P. vivax CS protein types can be grouped into Papuan and Brazilian types. These results suggest that an in-depth study of parasite population dynamics is required before field trials for vaccine formulations based on polymorphic immunodominant determinants are conducted

    Wide distribution of the variant form of the human malaria parasite Plasmodium vivax

    No full text
    Center for Infectious Diseases. Centers for Disease Control, Public Health Service. Department of Health and Human Service. Division of Parasitic Diseases. Malaria Branch. Atlanta, GA, USA.Center for Infectious Diseases. Centers for Disease Control, Public Health Service. Department of Health and Human Service. Division of Parasitic Diseases. Malaria Branch. Atlanta, GA, USA.Ministério da Saúde. Fundação Nacional de Saúde. Instituto Evandro Chagas. Belém, PA, Brasil.Ministério da Saúde. Fundação Nacional de Saúde. Instituto Evandro Chagas. Belém, PA, Brasil.Papua New Guinea Institute of Medical Research. Madang, PNG.Center for Infectious Diseases. Centers for Disease Control, Public Health Service. Department of Health and Human Service. Division of Parasitic Diseases. Malaria Branch. Atlanta, GA, USA.We have found polymorphism in the repetitive and nonrepetitive regions of the sporozoite vaccine antigen, the circumsporozoite (CS) protein, in Plasmodium vivax malaria parasites from two geographically distant malaria endemic regions of the world. Like the recently described variant repeat sequence of P. vivax from Thailand, the CS protein repeat sequence of the variant P. vivax parasites from Papua New Guinea and Brazil is ANGA(G/D)(N/D)QPG, which differs from the previously identified CS repeat sequence, GDRA(D/A)GQPA, of P. vivax parasites from South America, Central America, and North Korea. Comparison of the P. vivax CS protein outside the repeat region revealed restricted polymorphism in regions that have exhibited T-cell immune function and sequence heterogeneity in the CS protein of Plasmodium falciparum. Our results show that P. vivax malaria parasites with the variant CS repeat sequences are widespread in nature and that the polymorphism in the CS protein of P. vivax is also present in the nonrepeat region
    corecore