2,097 research outputs found
Semiclassical Time Evolution of the Holes from Luttinger Hamiltonian
We study the semi-classical motion of holes by exact numerical solution of
the Luttinger model. The trajectories obtained for the heavy and light holes
agree well with the higher order corrections to the abelian and the non-abelian
adiabatic theories in Ref. [1] [S. Murakami et al., Science 301, 1378(2003)],
respectively. It is found that the hole trajectories contain rapid oscillations
reminiscent of the "Zitterbewegung" of relativistic electrons. We also comment
on the non-conservation of helicity of the light holes.Comment: 4 pages, 5 fugure
How does digitalization alter the paradox of supply base concentration? The effects of digitalization intensity and breadth
Purpose – The highly uncertain and turbulent environments nowadays intensify the paradoxical effects of supply base concentration (SBC) on improving cost efficiency while increasing idiosyncratic risk (IR). Digitalization is regarded as a remedy for this paradox, yet digitization’s potentially curative effect has not been empirically tested. Leveraging the lenses of paradox theory and information processing theory (IPT), this study explores how two distinct dimensions of digitalization, i.e. digitalization intensity (DI) and digitalization breadth (DB), reconcile the paradoxical effects of SBC.
Design/methodology/approach – Using a panel dataset of 1,238 Chinese manufacturing firms in the period of 2012–2020, this study utilizes fixed-effects regression models to test the proposed hypotheses.
Findings – The authors discover that SBC enhances a firm’s cost efficiency but induces greater IR. More importantly, there is evidence that DI restrains the amplifying effect of SBC on IR. However, DB weakens the enhancing effect of SBC on cost efficiency and aggravates the SBC’s exacerbating effect on IR.
Originality/value – This study advances the understanding of the paradoxical effects of SBC on cost efficiency and IR from a paradox theory perspective. More importantly, to the best of the authors’ knowledge, the authors’ study is the first to untangle the differential roles of DI and DB in reconciling the paradox of SBC. This study also provides practitioners with nuanced insights into how the practitioners should use appropriate tactics to deploy digital technologies effectively
Solvent-Free Manufacturing of Electrodes for Lithium-Ion Batteries
Lithium ion battery electrodes were manufactured using a new, completely dry powder painting process. The solvents used for conventional slurry-cast electrodes have been completely removed. Thermal activation time has been greatly reduced due to the time and resource demanding solvent evaporation process needed with slurry-cast electrode manufacturing being replaced by a hot rolling process. It has been found that thermal activation time to induce mechanical bonding of the thermoplastic polymer to the remaining active electrode particles is only a few seconds. Removing the solvent and drying process allows large-scale Li-ion battery production to be more economically viable in markets such as automotive energy storage systems. By understanding the surface energies of various powders which govern the powder mixing and binder distribution, bonding tests of the dry-deposited particles onto the current collector show that the bonding strength is greater than slurry-cast electrodes, 148.8 kPa as compared to 84.3 kPa. Electrochemical tests show that the new electrodes outperform conventional slurry processed electrodes, which is due to different binder distribution
Collective excitations in double-layer quantum Hall systems
We study the collective excitation spectra of double-layer quantum-Hall
systems using the single mode approximation. The double-layer in-phase density
excitations are similar to those of a single-layer system. For out-of-phase
density excitations, however, both inter-Landau-level and intra-Landau-level
double-layer modes have finite dipole oscillator strengths. The oscillator
strengths at long wavelengths for the latter transitions are shifted upward by
interactions by identical amounts proportional to the interlayer Coulomb
coupling. The intra-Landau-level out-of-phase mode has a gap when the ground
state is incompressible except in the presence of spontaneous inter-layer
coherence. We compare our results with predictions based on the
Chern-Simons-Landau-Ginzburg theory for double-layer quantum Hall systems.Comment: RevTeX, 21 page
Recommended from our members
Semiclassical Time Evolution of the Holes from Luttinger Hamiltonian
We study the semi-classical motion of holes by exact numerical solution of the Luttinger model. The trajectories obtained for the heavy and light holes agree well with the higher order corrections to the abelian and the non-abelian adiabatic theories in Ref. [1] [S. Murakami et al., Science 301, 1378 (2003)], respectively. It is found that the hole trajectories contain rapid oscillations reminiscent of the 'Zitterbewegung' of relativistic electrons. We also comment on the non-conservation of helicity of the light holes
Normal levels of p27Xic1 are necessary for somite segmentation and determining pronephric organ size
The Xenopus laevis cyclin dependent kinase inhibitor p27Xic1 has been shown to be involved in exit from the cell cycle and differentiation of cells into a quiescent state in the nervous system, muscle tissue, heart and retina. We show that p27Xic1 is expressed in the developing kidney in the nephrostomal regions. Using over-expression and morpholino oligonucleotide (MO) knock-down approaches we show normal levels of p27Xic1 regulate pronephros organ size by regulating cell cycle exit. Knock-down of p27Xic1 expression using a MO prevented myogenesis, as previously reported; an effect that subsequently inhibits pronephrogenesis. Furthermore, we show that normal levels of p27Xic1 are required for somite segmentation also through its cell cycle control function. Finally, we provide evidence to suggest correct paraxial mesoderm segmentation is not necessary for pronephric induction in the intermediate mesoderm. These results indicate novel developmental roles for p27Xic1, and reveal its differentiation function is not universally utilised in all developing tissues
On the Electromagnetic Response of Charged Bosons Coupled to a Chern-Simons Gauge Field: A Path Integral Approach
We analyze the electromagnetic response of a system of charged bosons coupled
to a Chern-Simons gauge field. Path integral techniques are used to obtain an
effective action for the particle density of the system dressed with quantum
fluctuations of the CS gauge field. From the action thus obtained we compute
the U(1) current of the theory for an arbitrary electromagnetic external field.
For the particular case of a homogeneous external magnetic field, we show that
the quantization of the transverse conductivity is exact, even in the presence
of an arbitrary impurity distribution. The relevance of edge states in this
context is analyzed. The propagator of density fluctuations is computed, and an
effective action for the matter density in the presence of a vortex excitation
is suggested.Comment: LaTex file, 27 pages, no figure
Phase-separation of binary fluids in shear flow: a numerical study
The phase-separation kinetics of binary fluids in shear flow is studied
numerically in the framework of the continuum convection-diffusion equation
based on a Ginzburg-Landau free energy. Simulations are carried out for
different temperatures both in d=2 and in d=3. Our results confirm the
qualitative picture put forward by the large-N limit equations studied in
\cite{noi}. In particular, the structure factor is characterized by the
presence of four peaks whose relative oscillations give rise to a periodic
modulation of the behavior of the rheological indicators and of the average
domains sizes. This peculiar pattern of the structure factor corresponds to the
presence of domains with two characteristic thicknesses whose relative
abundance changes with time.Comment: 6 pages, 11 figures in .gif forma
Dynamics of an SO(5) symmetric ladder model
We discuss properties of an exactly SO(5) symmetric ladder model. In the
strong coupling limit we demonstrate how the SO(3)-symmetric description of
spin ladders in terms of bond Bosons can be upgraded to an SO(5)-symmetric
bond-Boson model, which provides a particularly simple example for the concept
of SO(5) symmetry. Based on this representation we show that antiferro-
magnetism on one hand and superconductivity on the other hand can be understood
as condensation of either magnetic or charged Bosons into an RVB vacuum. We
identify exact eigenstates of a finite cluster with general multiplets of the
SO(5) group, and present numerical results for the single particle spectra and
spin/charge correlation functions of the SO(5)-symmetric model and identify
`fingerprints' of SO(5) symmetry in these. In particluar we show that SO(5)
symmetry implies a `generalized rigid band behavior' of the photoemission
spectrum, i.e. spectra for the doped case are rigorously identical to spectra
for spin-polarized states at half-filling. We discuss the problem of adiabatic
continuity between the SO(5) symmetric ladder and the actual t-J ladder and
demonstrate the feasibility of a `Landau mapping' between the two models.Comment: Revtex-file, 16 pages with 15 eps-figures. Hardcopies of Figures (or
the entire manuscript) obtainable by e-mail request to
[email protected]
- …