81 research outputs found

    Reductions in serum IGF-1 during aging impair health span

    Full text link
    In lower or simple species, such as worms and flies, disruption of the insulin-like growth factor (IGF)-1 and the insulin signaling pathways has been shown to increase lifespan. In rodents, however, growth hormone (GH) regulates IGF-1 levels in serum and tissues and can modulate lifespan via/or independent of IGF- 1. Rodent models, where the GH/IGF-1 axis was ablated congenitally, show increased lifespan. However, in contrast to rodents where serum IGF-1 levels are high throughout life, in humans, serum IGF-1 peaks during puberty and declines thereafter during aging. Thus, animal models with congenital disruption of the GH/ IGF-1 axis are unable to clearly distinguish between developmental and age-related effects of GH/IGF-1 on health. To overcome this caveat, we developed an inducible liver IGF-1- deficient (iLID) mouse that allows temporal control of serum IGF- 1. Deletion of liver Igf -1 gene at one year of age reduced serum IGF-1 by 70% and dramatically impaired health span of the iLID mice. Reductions in serum IGF-1 were coupled with increased GH levels and increased basal STAT5B phosphorylation in livers of iLID mice. These changes were associated with increased liver weight, increased liver inflammation, increased oxidative stress in liver and muscle, and increased incidence of hepatic tumors. Lastly, despite elevations in serum GH, low levels of serum IGF-1 from 1 year of age compromised skeletal integrity and accelerated bone loss. We conclude that an intact GH/IGF-1 axis is essential to maintain health span and that elevated GH, even late in life, associates with increased pathology

    Optimization of Energy-Consuming Pathways towards Rapid Growth in HPV-Transformed Cells

    Get PDF
    Cancer is a complex, multi-step process characterized by misregulated signal transduction and altered metabolism. Cancer cells divide faster than normal cells and their growth rates have been reported to correlate with increased metabolic flux during cell transformation. Here we report on progressive changes in essential elements of the biochemical network, in an in vitro model of transformation, consisting of primary human keratinocytes, human keratinocytes immortalized by human papillomavirus 16 (HPV16) and passaged repeatedly in vitro, and the extensively-passaged cells subsequently treated with the carcinogen benzo[a]pyrene. We monitored changes in cell growth, cell size and energy metabolism. The more transformed cells were smaller and divided faster, but the cellular energy flux was unchanged. During cell transformation the protein synthesis network contracted, as shown by the reduction in key cap-dependent translation factors. Moreover, there was a progressive shift towards internal ribosome entry site (IRES)-dependent translation. The switch from cap to IRES-dependent translation correlated with progressive activation of c-Src, an activator of AMP-activated protein kinase (AMPK), which controls energy-consuming processes, including protein translation. As cellular protein synthesis is a major energy-consuming process, we propose that the reduction in cell size and protein amount provide energy required for cell survival and proliferation. The cap to IRES-dependent switch seems to be part of a gradual optimization of energy-consuming mechanisms that redirects cellular processes to enhance cell growth, in the course of transformation

    The future of affordable cancer immunotherapy

    Get PDF
    The treatment of cancer was revolutionized within the last two decades by utilizing the mechanism of the immune system against malignant tissue in so-called cancer immunotherapy. Two main developments boosted cancer immunotherapy: 1) the use of checkpoint inhibitors, which are characterized by a relatively high response rate mainly in solid tumors; however, at the cost of serious side effects, and 2) the use of chimeric antigen receptor (CAR)-T cells, which were shown to be very efficient in the treatment of hematologic malignancies, but failed to show high clinical effectiveness in solid tumors until now. In addition, active immunization against individual tumors is emerging, and the first products have reached clinical approval. These new treatment options are very cost-intensive and are not financially compensated by health insurance in many countries. Hence, strategies must be developed to make cancer immunotherapy affordable and to improve the cost-benefit ratio. In this review, we discuss the following strategies: 1) to leverage the antigenicity of “cold tumors” with affordable reagents, 2) to use microbiome-based products as markers or therapeutics, 3) to apply measures that make adoptive cell therapy (ACT) cheaper, e.g., the use of off-the-shelf products, 4) to use immunotherapies that offer cheaper platforms, such as RNA- or peptide-based vaccines and vaccines that use shared or common antigens instead of highly personal antigens, 5) to use a small set of predictive biomarkers instead of the “sequence everything” approach, and 6) to explore affordable immunohistochemistry markers that may direct individual therapies

    Invited Commentary: Broadening the Evidence for Adolescent Sexual and Reproductive Health and Education in the United States

    Get PDF

    The role of rhizobium meliloti exopolysaccharide in nodulation of alfalfa

    No full text
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Biology, 1987.Includes bibliographies.by Shoshana Klein.Ph.D

    Host Restriction and Transduction in Rhizobium meliloti

    No full text
    A host restriction difference exists between Rhizobium meliloti Rm41 and SU47 exists as indicated by the reduce plating efficiency of transducing phage ΦM12h1. Restriction can be attenuated by incubating cells at 42°C for 3 h; this procedure overcomes a block to transduction from SU47 to Rm41
    corecore