26 research outputs found

    Fungi at the scene of the crime: innocent bystanders or accomplices in oral infections?

    Get PDF
    Purpose of Review: Over the last decade, microbiome studies have enhanced our knowledge and understanding of the polymicrobial nature of oral infections. Recently, profiling of the fungal microbiome has expanded our conventional understanding of oral ecology, revealing the critical importance of yeasts within this complex microbiome. This review aims to explore our current appreciation of interkingdom interactions in oral disease. Recent Findings: There is a growing evidence base of interactions and pathogenic synergy and antagonism with bacterial species within oral disease. Recent studies have helped to develop our knowledge of how Candida albicans, alongside bacteria such as Porphyromonas gingivalis, Streptococcus mutans, Staphylococcus aureus, Enterococcus faecalis, and Lactobacillus species, influence overall pathogenicity. Summary: Clinical and experimental evidence makes a compelling case for a role for C. albicans in a number of oral infections, though whether its role is an active accomplice or passive bystander remains to be determined

    Dyeing fungi:amphotericin B based fluorescent probes for multiplexed imaging

    Get PDF
    The clinically used antifungal polyene amphotericin B was conjugated, via the mycosamine and the aglycon moieties, to fluorophores. The Cy5 conjugated probe showed selective labelling of fungi in the presence of bacteria, allowing multiplexed imaging and identification of microbial species in a co-culture of fungi and Gram-positive and Gram-negative bacteria

    Polymicrobial oral biofilm models: simplifying the complex

    Get PDF
    Over the past century, numerous studies have used oral biofilm models to investigate growth kinetics, biofilm formation, structure and composition, antimicrobial susceptibility and host–pathogen interactions. In vivo animal models provide useful models of some oral diseases; however, these are expensive and carry vast ethical implications. Oral biofilms grown or maintained in vitro offer a useful platform for certain studies and have the advantages of being inexpensive to establish and easy to reproduce and manipulate. In addition, a wide range of variables can be monitored and adjusted to mimic the dynamic environmental changes at different sites in the oral cavity, such as pH, temperature, salivary and gingival crevicular fluid flow rates, or microbial composition. This review provides a detailed insight for early-career oral science researchers into how the biofilm models used in oral research have progressed and improved over the years, their advantages and disadvantages, and how such systems have contributed to our current understanding of oral disease pathogenesis and aetiology

    Candida auris exhibits resilient biofilm characteristics in vitro: implications for environmental persistence

    Get PDF
    Surfaces within healthcare play a key role in the transmission of drug-resistant pathogens. Candida auris is an emerging multi-drug resistant yeast which has the ability to survive for prolonged periods on environmental surfaces. Here we show that the ability to form cellular aggregates increases survival after 14 days, which coincides with the upregulation of biofilm-associated genes. Additionally, the aggregating strain demonstrated tolerance to clinical concentrations of sodium hypochlorite and remain viable 14 days’ post treatment. The ability of C. auris to adhere and persist on environmental surfaces emphasises our need to better understand the biology of this fungal pathogen

    Chitosan ameliorates Candida auris virulence in a Galleria mellonella infection model

    Get PDF
    Candida auris has emerged as a multi-drug resistant nosocomial pathogen over the last decade. Outbreaks of the organism in healthcare facilities has resulted in life-threatening invasive candidiasis in over 40 countries worldwide. Resistance by C. auris to conventional antifungal drugs such as fluconazole and amphotericin B means that alternative therapeutics must be explored. As such, this study served to investigate the efficacy of a naturally derived polysaccharide called chitosan against aggregative (Agg) and non-aggregative (non-Agg) isolates of C. auris in vitro and in vivo. In vitro results indicated that chitosan was effective against planktonic and sessile forms of Agg and non-Agg C. auris. In a Galleria mellonella model to assess C. auris virulence, chitosan treatment was shown to ameliorate killing effects of both C. auris phenotypes (NCPF 8973 and NCPF 8978, respectively) in vivo. Specifically, chitosan reduced the fungal load and increased survival rates of infected Galleria, whilst treatment alone was non-toxic to the larvae. Finally, chitosan treatment appeared to induce a stress-like gene expression response in NCPF 8973 in the larvae likely arising from a protective response by the organism to resist antifungal activity of the compound. Taken together, results from this study demonstrate that naturally derived compounds such as chitosan may be useful alternatives to conventional antifungals against C. auris

    Investigating the transcriptome of Candida albicans in a dual-species Staphylococcus aureus biofilm model

    Get PDF
    Candida albicans is an opportunistic pathogen found throughout multiple body sites and is frequently co-isolated from infections of the respiratory tract and oral cavity with Staphylococcus aureus. Herein we present the first report of the effects that S. aureus elicits on the C. albicans transcriptome. Dual-species biofilms containing S. aureus and C. albicans mutants defective in ALS3 or ECE1 were optimised and characterised, followed by transcriptional profiling of C. albicans by RNA-sequencing (RNA-seq). Altered phenotypes in C. albicans mutants revealed specific interaction profiles between fungus and bacteria. The major adhesion and virulence proteins Als3 and Ece1, respectively, were found to have substantial effects on the Candida transcriptome in early and mature biofilms. Despite this, deletion of ECE1 did not adversely affect biofilm formation or the ability of S. aureus to interact with C. albicans hyphae. Upregulated genes in dual-species biofilms corresponded to multiple gene ontology terms, including those attributed to virulence, biofilm formation and protein binding such as ACE2 and multiple heat-shock protein genes. This shows that S. aureus pushes C. albicans towards a more virulent genotype, helping us to understand the driving forces behind the increased severity of C. albicans-S. aureus infections

    Informed development of a multi-species biofilm in chronic obstructive pulmonary disease

    Get PDF
    Recent evidence indicates that microbial biofilm aggregates inhabit the lungs of COPD patients and actively contribute towards chronic colonization and repeat infections. However, there are no contextually relevant complex biofilm models for COPD research. In this study, a meta-analysis of the lung microbiome in COPD was used to inform development of an optimized biofilm model composed of genera highly associated with COPD. Bioinformatic analysis showed that although diversity matrices of COPD microbiomes were similar to healthy controls, and internal compositions made it possible to accurately differentiate between these cohorts (AUC = 0.939). Genera that best defined these patients included Haemophilus, Moraxella and Streptococcus. Many studies fail to account for fungi; therefore, Candida albicans was included in the creation of an interkingdom biofilm model. These organisms formed a biofilm capable of tolerating high concentrations of antimicrobial therapies with no significant reductions in viability. However, combined therapies of antibiotics and an antifungal resulted in significant reductions in viable cells throughout the biofilm (p < 0.05). This biofilm model is representative of the COPD lung microbiome and results from in vitro antimicrobial challenge experiments indicate that targeting both bacteria and fungi in these interkingdom communities will be required for more positive clinical outcomes

    Dose-dependent effects of enteral nutrition on the faecal microbiota and short chain fatty acids

    Get PDF
    Introduction: Enteral nutrition (EN) involves replacing all or part of a person’s habitual diet with a nutritional formula. The impact of varying doses of EN on the gut microbiome remains understudied. Methods: Healthy adults replaced all (100% EN) or part (85% EN, 50% EN and 20% EN) of their energy requirements with EN for 7 days. Faecal samples were collected before and on day 7 of interventions. Faecal pH, short chain fatty acids (SCFAs), branched-chain fatty acids (BCFAs) and 16S rRNA sequencing were performed. Dietary assessment was performed with 7-day food diaries. Results: Sixty-one participants (31 females; median (IQR) age: 24.7 (23.0-27.8) years) were recruited. A dose-dependent impact of EN on faecal microbiota, SCFAs, BCFAs) and pH was observed, with changes detectable at EN intakes of at least 50% of energy requirements. 100% and 85% EN reduced the abundance of fibre-fermenting taxa such as Agathobacter, Faecalibaterium, Succinivibrio and Acidaminococcus. In parallel, potentially harmful organisms like Eubacterium, Actinomyces, and Klebsiella increased. In the 50% EN group, adherence to a diet high in fish, vegetables, potatoes, non-alcoholic beverages, and fat spreads, and low in cereal products, milk, and meat negatively correlated with changes in microbiota structure (r=-0.75, P=0.025). This signal was not observed when using compositional tools for microbiota analysis. Conclusions: EN detrimentally influences the faecal microbiota and diet-related bacterial metabolites in a dose-dependent manner, particularly at doses of at least 50%. The findings of this study have implications for the dietary management and counselling of patients receiving high volume EN
    corecore